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Abstract
Recent work has claimed that (non-tonal) phonological patterns are subregular
(Heinz 2011a,b, 2018; Heinz and Idsardi 2013), occupying a delimited proper subre-
gion of the regular functions—the weakly deterministic (WD) functions (Heinz and
Lai 2013; Jardine 2016). Whether or not it is correct (McCollum et al. 2020a), this
claim can only be properly assessed given a complete and accurate definition of WD
functions. We propose such a definition in this article, patching unintended holes in
Heinz and Lai’s (2013) original definition that we argue have led to the incorrect clas-
sification of some phonological patterns as WD. We start from the observation that
WD patterns share a property that we call unbounded semiambience, modeled after
the analogous observation by Jardine (2016) about non-deterministic (ND) patterns
and their unbounded circumambience. Both ND and WD functions can be broken
down into compositions of deterministic (subsequential) functions (Elgot and Mezei
1965; Heinz and Lai 2013) that read an input string from opposite directions; we
show that WD functions are those for which these deterministic composands do not
interact in a way that is familiar from the theoretical phonology literature. To under-
score how this concept of interaction neatly separates the WD class of functions from
the strictly more expressive ND class, we provide analyses of the vowel harmony
patterns of two Eastern Nilotic languages, Maasai and Turkana, using bimachines,
an automaton type that represents unbounded bidirectional dependencies explicitly.
These analyses make clear that there is interaction between deterministic composands
when (and only when) the output of a given input element of a string is simultane-
ously dependent on information from both the left and the right: ND functions are
those that involve interaction, while WD functions are those that do not.

Keywords Phonology · Computational phonology · Subregular hierarchy ·
Interaction

1 Introduction

Over the past decade, research at the intersection of computational phonology and
formal language theory has advanced the SUBREGULAR HYPOTHESIS, which claims
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Fig. 1 A hierarchy of regular
function classes, based on Heinz
(2018) and Aksënova et al.
(2020). All classes define
functional string transductions
(every input string has at most
one output string), and
everything below the
non-deterministic regular
functions are examples of
subregular string transductions

that phonological patterns “occupy some area strictly smaller than the regular lan-
guages” (Heinz 2011a: 147) and that “the study of the typology of the attested trans-
formations [= input-output maps, henceforth] in the light of the existing categories
yields similar conclusions” (Heinz 2018: 198). This work has usefully defined various
classes of subregular functions relevant to the description of phonological transfor-
mations, all properly included within the regular functions1 in terms of their COM-
PUTATIONAL EXPRESSIVITY—the ability of a function defined within that class to
describe some otherwise well-defined set(s) of phonological transformations.

Figure 1 is a recent snapshot of the most significant of these subregular function
types and their hierarchical inclusion relationships with respect to one another. John-
son (1972) and Kaplan and Kay (1994) showed that the SPE formalism of ordered
conditional rewrite rules (Chomsky and Halle 1968) is expressively equivalent to the
regular functions; assuming that this formalism is sufficiently expressive to describe
all phonological grammars, it follows that phonology is regular and thus that every
phonological pattern is able to be described with a NON-DETERMINISTIC (ND) func-
tion from the top of the hierarchy in Fig. 1.

One of the aims of recent research in this area is to assess more precisely the
minimum degree of computational expressivity required to describe otherwise well-
defined sets of phonological patterns, in part to verify whether the full expressive
power of the ND class of functions is required to describe phonological grammars.
This work has led to results such as “local non-iterative assimilation patterns are input
strictly local” (Chandlee 2014; Chandlee and Heinz 2018), “unidirectional iterative
assimilation patterns are output strictly local” (Chandlee et al. 2015), and “bidirec-
tional iterative assimilation patterns are weakly deterministic” (Heinz and Lai 2013).

1What we are calling “regular functions” here and throughout are more precisely termed the rational func-
tions in the larger context of formal language theory from the last few decades, where the term “regular”
has begun to be reserved for more complex functions that can be expressed by e.g. two-way determinis-
tic finite-state transducers; see e.g. Gauwin (2020: Ch. 2). Because we have no need to make use of this
distinction, we keep with older usage and with most of the existing literature in computational phonology
and persist in using the term “regular” throughout. We thank a reviewer for advocating that we be upfront
about this terminological issue.
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These results lead in turn to readily testable hypotheses about the relative complexity
and learnability of different types of phonological patterns. Any future results derived
from testing hypotheses generated by previous results are of course only as reliable
as the previous results on which the hypotheses are based, which are in turn only as
reliable as the formal definitions of any subregular function types relevant to those
hypotheses. It is thus imperative that these definitions be as meaningfully accurate as
possible.

From the perspective of theory development, good mathematical definitions are
insightful, may crystalize linguistic intuitions, and often suggest future directions
for research or offer an unexpected unification of previously disparate results and hy-
potheses. Some examples from the relatively recent literature include Oakden (2020),
demonstrating that “two competing feature-geometric models of tonal representation
are notationally equivalent”; Jardine et al. (2021), showing that “Q-Theory and Au-
tosegmental Phonology are equivalent in terms of the constraints they can express”;
and Bennett and DelBusso (2018), establishing that some apparently different con-
straint sets in the Agreement by Correspondence framework “not only result in the
same extensional predictions; they also generate them in identical ways.”

Our focus in this article is on the distinction between sets of phonological pat-
terns that have motivated the postulation of the WEAKLY DETERMINISTIC (WD)
class of functions, at the outer edge of the set of subregular functions depicted in
Fig. 1, intermediate between the strictly less expressive subsequential and the strictly
more expressive non-deterministic classes of functions. Heinz and Lai (2013) pro-
pose the WD class to demarcate the expressivity boundary between two established
types of phonological patterns. On the one hand there are amply attested bidirec-
tional harmony patterns, in which the harmonic feature value spreads outward from
a designated origin until it reaches a blocking segment or the end of the spread-
ing domain. Bidirectional harmony is illustrated in (1a) with examples from Maasai
(Eastern Nilotic; Tucker and Mpaayei 1955—see Sect. 3).2 On the other hand are
purportedly unattested patterns of so-called “sour grapes” harmony, illustrated with
hypothetical examples (based on those from Maasai) in (1b). Sour grapes harmony
is a subspecies of non-myopic spreading (Wilson 2003, 2006) in which the harmonic
feature value completely fails to spread in a given direction if there is a blocking
segment anywhere in that direction.3

(1) a. Bidirectional harmony in Maasai

i. Full bidirectional spreading of [+ATR]
/kI-

√
ñorr-U/ −→ [ki-

√
ñorr-u] ‘1PL-love-PRES’

ii. Leftward spreading blocked by /A/

/I-
√
As-ISO-re/ −→ [I-

√
As-iSo-re] ‘2SG-do-INTR-APPL’

2Leipzig conventions for abbreviations are used in this article. In all data cited in this article, morpheme
boundaries are indicated with hyphens, roots are indicated with a preceding

√
symbol, and the presence of

the spreading feature value (or tone) in underlying representations (enclosed in / /), and the extent of its
spread in surface representations (enclosed in [ ]), is indicated with underlining.
3On the (un)attestedness of different types of sour grapes spreading patterns, see Wilson (2003, 2006);
Walker (2010); Kimper (2012); Mullin and Pater (2015); Mascaró (2019); McCollum et al. (2020b) and
Leduc and McCollum (2022).



E. Meinhardt et al.

b. Non-myopic “sour grapes” harmony (hypothetical)

i. Full bidirectional spreading of [+ATR]
/kI-

√
ñorr-U/ −→ [ki-

√
ñorr-u]

ii. Leftward spreading completely fails due to the presence of /A/

/I-
√
As-ISO-re/ −→ [I-

√
As-ISO-re]

Heinz and Lai (2013) conjecture that the types of functions required to describe
patterns of bidirectional harmony like (1a) are strictly less expressive than those re-
quired to describe patterns of sour grapes harmony like (1b). Suppose that a sour
grapes harmony function is reading the input form /I-

√
As-ISO-re/ from right to left. It

first encounters the harmony trigger /e/, and then the potential harmony target /O/.
Given that it doesn’t yet “know” that the blocker /A/ is further down the line, the func-
tion must entertain either of the two possible outcomes for this target—harmonize to
[o] or remain [O]—until either a blocker or the end of the form is reached. This is
the relevant sense in which this function must be non-deterministic: it’s not that one
input may result in more than one output, it’s that the output of a given input symbol
is not incrementally deterministic in information from one side or from the other.

Now suppose that a bidirectional harmony function is reading the same input form,
/I-

√
As-ISO-re/, again from right to left. Upon encountering the potential target /O/,

the outcome is immediately known: harmonize to [o]. Likewise for the next target
/I/, which harmonizes to [i]. When the blocker /A/ is encountered next, only the
subsequent potential target—the initial /I/—is affected, and its outcome is likewise
immediately known: remain [I]. What makes this function weakly deterministic is
that a potential target may be on either side of a trigger or blocker. If this same form
is instead read from left to right, the outcome for the initial /I/ cannot be known
until the blocker /A/ is reached, and the outcomes for the subsequent targets /I/

and /O/ cannot be known until the trigger /e/ is reached. This is the key difference
between the ND and WD classes of functions: for patterns requiring the expressivity
of the WD class of functions, like bidirectional harmony (1a), the output for any input
symbol can be determined based on information on one side or the other, whereas
for patterns requiring the expressivity of the ND class of functions, like sour grapes
harmony (1b), the output of some input symbols can only be determined based on
information on both sides.

Jardine (2016) builds on Heinz and Lai (2013) by demonstrating that attested un-
bounded tonal plateauing patterns have the relevant descriptive characteristics of non-
myopic spreading: a high tone (H) only spreads in a given direction if there is another
H somewhere in that direction. Put differently, H completely fails to spread in a given
direction if there is no other H anywhere in that direction; compare the definition
of non-myopic harmony in (1b). Unbounded tonal plateauing patterns thus require
greater expressivity than that afforded by WD functions, leading Jardine to conjec-
ture that the WD class also demarcates the expressivity boundary between non-tonal
and tonal phonology. Jardine (2016: 252, (9)) cites the following pair of examples of
compounds in Luganda (Bantu) exemplifying unbounded tonal plateauing.

(2) Non-myopic unbounded tonal plateauing in Luganda

a. Spreading between two Hs
/mu-tém-a+bi-siḱı/ −→ [mu-tém-á+b́ı-śık̂ı] ‘log-chopper’
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b. No spreading from just one H
/mu-tund-a+bi-kópo/ −→ [mu-tund-a+bi-kópo] ‘cup-seller’

McCollum et al. (2020a) respond by identifying attested non-tonal feature spread-
ing patterns having these same descriptive characteristics and that thus also require
crossing the WD expressivity boundary. McCollum et al. (2020a: 217, (1)) cite the
following pair of examples in Tutrugbu (Kwa) showing that regressive spreading of
[+ATR] from roots is blocked by [−high] vowels only if the initial vowel is [+high].

(3) Non-myopic conditional blocking in Tutrugbu

a. Spreading if initial V is [−high]
/a-t́I-ba-

√
Sē/ −→ [e-t́ı-be-

√
Sē] ‘3SG-NEG-FUT-grow’

b. Blocking by [−high] if initial V is [+high]
/I-t́I-ba-

√
Sē/ −→ [I-t́I-ba-

√
Sē] ‘1SG-NEG-FUT-grow’

The WD–ND boundary is thus clearly an important one to define properly, given
that it serves as the dividing line between amply attested myopic patterns of bidi-
rectional vowel harmony (1a) and other, non-myopic patterns, ranging from the ap-
parently unattested (1b), to the exclusively tonal (2), to the comparatively rare (3).
Heinz and Lai’s (2013) aim is to properly define the WD class of functions, but sub-
sequent work (Graf 2016; McCollum et al. 2018; Lamont et al. 2019; O’Hara and
Smith 2019; Smith and O’Hara 2019) has shown that some types of functions techni-
cally (and counterintuitively) satisfy Heinz and Lai’s (2013) definition despite clash-
ing with what we feel justified to claim was its intended scope: to include myopic
spreading patterns and to exclude non-myopic spreading patterns. We demonstrate in
this article how Heinz and Lai’s (2013) definition does not accomplish its intended
goal of distinguishing myopic from non-myopic spreading, and we offer a revised
definition that accurately distinguishes the intended sets of functions based on a def-
inition of INTERACTION closely related to the notion familiar from the phonological
literature.4

The article is structured as follows. First, in Sect. 2, we provide some necessary
formal background for understanding the problems with Heinz and Lai’s (2013) def-
inition of the WD class of functions and our approach to solving them. In Sect. 3 we
turn to the empirical focus of the article, the vowel harmony patterns of two Eastern
Nilotic languages, Maasai (Tucker and Mpaayei 1955) and Turkana (Dimmendaal
1983). We devote special attention to the differences that lead these two patterns to
be on different sides of the intended WD function boundary, clarifying both the intent
and the limits of Heinz and Lai’s (2013) definition. In Sect. 4 we introduce a more
precise definition of interaction between string functions, clarify its role in adjudicat-
ing the WD–ND boundary, and introduce our proposed definition of weak determin-
ism that properly distinguishes the pattern in Maasai from the pattern in Turkana. We
end the article with a discussion of the computational and linguistic naturalness of

4A reviewer takes issue with our characterization of our contribution in relation to Heinz and Lai (2013),
suggesting that we are defining a different class of functions than Heinz and Lai (2013) did as opposed to
revising Heinz and Lai’s definition of the WD class. We believe that this alternative characterization, while
mathematically accurate, risks misrepresenting the fact that our aim here is to build on the phonological
significance of (what we take to be) the intention behind Heinz and Lai’s original contribution.
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our revised definition of weak determinism in Sect. 5 and with a brief conclusion in
Sect. 6.

2 Formal background

2.1 Scope of relevant claims

We begin here with some clarification of what various results reported in the subreg-
ular hypothesis literature mean and what they don’t mean. There is understandable
confusion here, due to the fact that the subregular hypothesis itself is intended to
be a claim about “phonology” generally—“phonology is subregular”—and the scope
of “phonology” in this claim is typically not made sufficiently clear. Reported re-
sults within this broad hypothesis often reference individual phenomena (e.g., that
bidirectional iterative assimilation is weakly deterministic; Heinz and Lai 2013) or
substantive classes thereof (e.g., that non-tonal phonology is subregular while tonal
phonology is not; Jardine 2016). However, the statement of these reported results
should in and of themselves not be taken as claims about the complexity of phonol-
ogy in toto.

It is perhaps simplest and most directly useful to clarify this point as follows. The
individual components of a phonological analysis—however these may be identified
(as the mapping performed by a single rule or by a set of rules in an SPE-style anal-
ysis; as the candidates that best-satisfy a single constraint or a set of constraints in
an OT analysis, etc.)—are not (typically) the ultimate objects of researchers’ claims
within this area of computational phonology. Rather, claims about the complexity
of phonology are claims about the nature of the computations required to map any
single valid underlying representation (UR) to its grammatical surface representation
(SR). The fact that an overall UR �→SR map may be broken down into (possibly)
simpler parts has no impact on this notion of overall computational complexity. It
is for precisely this reason that results from this approach are of interest to a wide
range of phonologists: different analysts may favor different ways of breaking down
phonological patterns, but results concerning the minimal necessary computational
complexity of the overall UR �→SR map assumed to be performed by the phonologi-
cal component are fixed.

To perhaps see this more clearly, suppose for example that the functional descrip-
tion of some well-defined set of input-output mappings in a given language is shown
to require the expressivity afforded by a defined class of functions F1. Suppose fur-
ther that this set of input-output mappings has a phonological analysis in terms of two
(or more) independently motivated processes, and that the set of input-output map-
pings individually described by each of those processes can be shown to require the
expressivity afforded by some other defined class of functions F2 that is strictly less
expressive than F1. The F1 class is still required to express the entire input-output
map in such an example; the availability of a phonological analysis whose individ-
ual components only require the expressivity afforded by F2 does not alter this fact,
regardless of whatever independent linguistic motivation there may be for the com-
ponential breakdown in that analysis.
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Indeed, this is precisely the situation that we will encounter in our analyses of
the vowel harmony patterns in Maasai and Turkana in Sect. 3. Most if not all previ-
ous phonological analyses of both patterns have involved the postulation of (at least)
two harmonic feature spreading processes, at least one applying from left to right
and another applying from right to left, with some amount of independent linguis-
tic motivation for each. Similarly, our analyses break both patterns down into two
CONTRADIRECTIONAL functions, one reading the input string from left to right and
the other from right to left. Each of these functions is SUBSEQUENTIAL, requiring
strictly less expressivity than the composition of it with its contradirectional coun-
terpart. The main question that we address in this paper is: what property of these
compositions makes some WD and others ND? We argue that the significant differ-
ence between functional analyses of WD and ND patterns comes down to whether
the two contradirectional functions INTERACT. For brevity and exposition, we give
a relatively informal definition of interaction in Def. 1, to be followed up by a more
formal definition in Sect. 4.2.

Def. 1 An input-output map (X∗ → Y ∗), broken down into two contradirectional
functions l and r , requires that l and r interact if there exists some input symbol
xi ∈ X for which the determination of the corresponding output string yi ∈ Y ∗ is
dependent on information from both sides of xi , where information from the left is
uniquely accessible to l and information from the right is uniquely accessible to r .

As we show in Sects. 3–4 below, the contradirectional functions describing the
harmony pattern in Maasai do not interact, and this makes their composition a WD
function. By contrast, the contradirectional functions describing the harmony pattern
in Turkana do interact, making their composition an ND function.

2.2 Regular functions, composition, and weak determinism: The view
“from below”

In general, any regular function can be broken down into two contradirectional sub-
sequential functions (Elgot and Mezei 1965: 60, Prop. 7.4), with one (the “outer”
function) composed with and applying to the result of the other (the “inner” func-
tion). We refer to all such broken-down regular functions as ELGOT-MEZEI (EM)
COMPOSITIONS. Heinz and Lai (2013) define the subregular WD functions in terms
of a restriction on EM compositions. In their initial, informal definition, they state
that a WD function “can be decomposed into [an inner] subsequential and [an outer,
contradirectional] subsequential function without the [inner] function marking up its
output in any special way” (Heinz and Lai 2013: 52, emphasis added). To keep these
restricted compositions distinct from EM compositions, we refer to them as HEINZ-
LAI (HL) COMPOSITIONS.

There are four main, interrelated things to note about EM compositions and HL
compositions. The first is that each of the two composand functions is subsequential.5

A subsequential function reads its input string incrementally, strictly in one direction

5Similar to our discussion of “rational” vs. “regular” in fn. 1, we are using the older term “subsequential”
that is also still more prevalent in the computational phonology literature. There is a reasonable argument
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or the other, and is able to remember some (finite) amount of what it has already
read in the string unboundedly far back in the string but only to look boundedly far
ahead to aid in deciding what to write to its output at any given point. A subsequential
function is sufficiently expressive to describe a prototypical unidirectional vowel har-
mony pattern, such as the left-to-right ATR harmony pattern found in Tangale (Kidda
1985), illustrated in (4a), or the right-to-left ATR harmony pattern found in Yoruba
(Bamgbos.e 1966), illustrated in (4b). In order to know whether to output a [+ATR]
or a [−ATR] vowel for any given affix in each of these cases, the function only needs
to know the ATR value of the vowel(s) that it has already read to the left (in Tangale)
or to the right (in Yoruba).

(4) a. Left-to-right ATR harmony in Tangale: left-subsequential

i. All vowels are [−ATR]
/

√
tENl-Un-gO/ −→ [

√
tENl-Un-gO] ‘mislead-1SG-PERF.SG’

ii. Rightward spreading of [+ATR]
/

√
âob-Um-gU/ −→ [

√
âob-um-gu] ‘call-1PL-PERF.PL’

b. Right-to-left ATR harmony in Yoruba: right-subsequential

i. All vowels are [+ATR]
/o-ge-

√
de/ −→ [o-ge-

√
de] ‘incantation’

ii. Leftward spreading of [−ATR]
/o-ge-

√
dE/ −→ [O-gE-

√
dE] ‘banana/plantain’

The subsequential class of functions is strictly less expressive than the WD or
ND classes, as can be seen in Fig. 1, but the composition of two contradirectional
subsequential functions may result in an overall function properly belonging to one
or the other of the strictly more expressive WD or ND classes. This is the case for
the composition of a left-subsequential function and a right-subsequential function
needed to describe a bidirectional harmony pattern like the ones in Maasai (1a) and
Turkana, as we’ll see in Sects. 3–4.

The second thing to note is that the two functions are contradirectional: one is
left-subsequential, reading its input string incrementally starting from the left, and
the other is right-subsequential, reading its input string incrementally starting from
the right.6 The information in the input string to which each of these functions has
access differs accordingly: the left-subsequential function has access to information
unboundedly far to the left and bounded lookahead access to the right, while the
right-subsequential function has access to information unboundedly far to the right
and bounded lookahead access to the left. This difference in information access is
schematically represented in Fig. 2: string positions enclosed in the solid-line oval

to be made that the name and meanings of “sequential” and “subsequential” should be swapped, and some
movement towards this swap has begun in recent years elsewhere. See e.g. Roche and Schabes (1997:
45–46), Bojańczyk and Czerwiński (2018: Ch. 13, fn. 1), or Heinz and Lai (2013: fn. 3).
6Indeed, Heinz and Lai (2013: 52) use “left” and “right” to characterize the two subsequential functions
that comprise an HL composition. We use “inner” and “outer, contradirectional” because we find it signals
more clearly that the first function to apply may be either left-subsequential or right-subsequential so long
as the second function to apply is contradirectional.
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Fig. 2 Information access of an arbitrary string from an arbitrary position (�) by two contradirectional
subsequential functions. At position �, a right-subsequential function has access to information about all
positions (�) enclosed within the dashed-line oval, from position �L to the end of the string �, and a
left-subsequential function has access to information about all positions enclosed in the solid-line oval,
from the beginning of the string � to position �R . The maximum distance that �R or �L can be from� under any circumstances is an a priori known constant k; k is (arbitrarily) 3 for the left-subsequential
function and (again, arbitrarily) 2 for the right-subsequential function

and not also in the dashed-line oval are ones that are uniquely accessible to the left-
subsequential function, while positions enclosed in the dashed-line oval and not also
in the solid-line oval are ones that are uniquely accessible to the right-subsequential
function; this is the sense of “uniquely accessible” referenced in Def. 1. As a succinct
and direction-agnostic shorthand, we will refer to the side of the string “already read”
by a given function at any given point in its traversal of the input word as the CAUSAL

PAST of the function at that point, and we will refer to the side of the string that the
function has “not yet read” as its CAUSAL FUTURE.

The third thing to note is that the two functions of the composition are (assumed
to be) ORDERED with respect to one another: one is the “inner” function I , applying
first, and the other is the “outer” function O , applying to the result of I . In other
words, I and O are COMPOSED, conventionally represented as O ◦ I .

The fourth thing to note is the additional restriction of HL compositions: that the
inner function I does not “[mark] up its output in any special way.” The intention
of this restriction is to prevent I from providing information to the outer function
O about what has previously been read on I ’s unbounded, causal past side, which
is O’s bounded, causal future side. If I is able to provide such information to O ,
then O would essentially have unbounded access to information on both sides of the
string, effectively rendering O more expressive than subsequential, and thus render-
ing the composition O ◦ I in general more expressive than an alternative composition
in which I did not mark up its output in any special way.

In the discussion leading up to their formal definition of the WD class of func-
tions, Heinz and Lai (2013: 54–55) explicitly identify two forms of inner func-
tion markup to be precluded. One is the addition of novel symbols to the output
of the inner function I , symbols that aren’t in the original alphabet of I ’s input.
If I is able to write novel symbols, then those symbols can be strategically de-
ployed in such a way that crucial information about I ’s unbounded side is com-
municated to the outer function O . A function that does not add novel symbols in
this way is ALPHABET-PRESERVING, and a function that does add novel symbols is
ALPHABET-INCREASING. The other form of explicitly precluded markup is the use
of novel sequences of symbols in I ’s input alphabet that can also be strategically de-
ployed to communicate crucial information to O about I ’s unbounded side. A func-
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tion that effectively encodes new symbols in this way will necessarily be LENGTH-
INCREASING: in general, the length of the output string will be no shorter than the
input string and sometimes longer as a result of the insertion of substrings that effec-
tively encode new symbols. A LENGTH-PRESERVING function, in contrast, cannot
use this particular strategy for encoding novel symbols.

We claim here that what unifies alphabet-increasing and length-increasing inner
functions in compositions of contradirectional subsequential functions O ◦ I is not
that both allow particular forms of markup per se, but rather that both enable in-
formation from the unbounded, causal past side of I—information that is uniquely
accessible to I—to be crucially communicated to O , fundamentally changing O’s be-
havior by effectively providing O with unbounded access to both sides of the string.
When one function changes its contradirectional counterpart’s behavior in this way,
the two functions interact as in Def. 1. Information from the unbounded, causal past
side of I is information that is uniquely accessible to I ; giving O access to that in-
formation, whether via these two forms of markup or otherwise, enables the output
of a given input symbol to be synergistically dependent both on that information and
on information uniquely accessible to O .

Note that, in general, when two functions interact, the order of their composition
is important, and—typically—when the order of composition does not matter, they
do not interact. Whether any markup introduced by I “matters” in the relevant sense
depends on whether it is crucially used by O: if I is alphabet- or length-increasing
but O does not make crucial use of that markup, then the composition O ◦ I may still
be WD in the sense that we take to be intended by Heinz and Lai (2013). Conversely,
if I is alphabet- and length-preserving but nevertheless I and O interact, then their
composition is ND—indeed, this is what we argue is the case for the ATR harmony
pattern of Turkana in Sect. 3.2. In other words, whether or not a composition of
two contradirectional subsequential functions is a WD or an ND function depends
on whether the two functions interact, and not per se on whether the inner function
introduces some form of markup.

2.3 Circumambience, semiambience, and weak determinism: The view
“from above”

As discussed above, Elgot and Mezei (1965) characterize the ND functions in terms
of contradirectional compositions of subseqential functions where the inner function
changes the behavior of (= interacts with) the outer function based on information
from unboundedly far in the causal future of the outer function. Jardine (2016) offers
an essentially phenomenological characterization of properly ND functions in terms
of the location of information in the input that is used to determine the output of
a given input symbol. In what follows we center Jardine’s framing over Elgot and
Mezei’s, and base our revised definition of weak determinism on the WD analogue
of Jardine’s phenomenological characterization of the ND functions.

One of Jardine’s (2016) key results is that the minimum level of computational
expressivity required to describe UNBOUNDED CIRCUMAMBIENT patterns is that af-
forded by the class of ND functions, at the outer edge of the class of regular functions
and thus strictly more expressive than the class of WD functions (see now also Hao
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and Andersson 2019; Koser and Jardine 2020; McCollum et al. 2020a). A definition
of unbounded circumambience, based on Jardine (2016: 249), is given in Def. 2.7

Def. 2 In an unbounded circumambient pattern,

a. the output of at least one input symbol (= a target) is dependent on
information on both sides of the target; and [= CIRCUMAMBIENT]

b. on both sides, there is no principled a priori bound on how far this
information may be from the target. [= UNBOUNDED]

All of the non-myopic spreading patterns mentioned thus far are unbounded cir-
cumambient. In the hypothetical case of sour grapes harmony in (1b), whether har-
mony targets surface as [+ATR] requires both that [+ATR] be present on one side of
those targets and that there be no blocking /A/ present on the other side. In the case
of unbounded tonal plateauing in Luganda in (2), whether spreading targets surface
with H tone requires that H tones be present on both sides of those targets. Lastly,
in the case of conditional blocking in Tutrugbu in (3), whether harmony targets sur-
face as [+ATR] requires that [+ATR] be present to the right of those targets and, if
a [−high] vowel is also present to the right, that the initial vowel to the left not be
[+high]. In all of these cases the need for circumambient information is clear. Their
unbounded nature must be inferred from bounded examples, just as the unbounded
nature of any iterative spreading pattern must be.

A regular function describing an unbounded circumambient pattern can be bro-
ken down into a composition of two contradirectional subsequential functions, with
each properly identifying critical information at an a priori unbounded distance on
the side of the target in the function’s causal past. Unlike a proper HL composition
corresponding to a WD function, however, the inner function of this EM composition
must somehow communicate to the outer function whether the critical information
is present on the side of the target in the outer function’s causal future in order to
correctly describe the unbounded circumambient process. Explained in terms of EM
compositions, that is why these patterns require greater computational expressivity
than that afforded by the WD functions.

While the literature on weak determinism and its relation to the expressivity of
phonology has to date centered on Heinz and Lai’s (2013) initial Elgot and Mezei-
derived framing, we suggest instead that Jardine’s definition readily motivates the
weakly deterministic parallel to unbounded circumambience in Def. 3. Crucially, this
phenomenological characterization of WD functions does not require that the side of
the target containing critical information always be the same from word to word or
even the same from target to target within the same word; such restrictions hold for
the strictly even less expressive subsequential functions.

Def. 3 In an unbounded semiambient pattern,

7Jardine’s (2016) definition of unbounded circumambience references “processes” rather than the “pat-
terns” that we reference in Def. 2. We have changed this wording in an effort to head off misunderstand-
ings about the scope of relevant claims, as discussed in Sect. 2.1—specifically, the misapprehension that
unbounded circumambience is (strictly) a property of individual phonological rules.
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a. the output of any given input symbol (= any target) is determined
by information from at most one side of the target; and [= SEMIAMBIENT]

b. on any determining side, there is no principled a priori bound on
how far the determining information may be from the target. [= UNBOUNDED]

We argue in Sect. 4 that in addition to correctly capturing the intended scope of
Heinz and Lai’s (2013) definition of the WD functions, this framing of weak deter-
minism in terms of what information is needed from where is not only equivalent but
often simpler to understand and work with than one explicitly grounded in compo-
sitions of contradirectional functions. Furthermore, as we will show in Sect. 4, our
phenomenological identification of unbounded semiambience with weak determin-
ism is computationally well-founded.

Equipped with this background, we can delve into the details of the vowel har-
mony patterns of Maasai and Turkana in Sect. 3. As we’ll see, the Turkana pattern is
unbounded circumambient, dependent on information on both sides of some targets
of harmony, while the Maasai pattern is unbounded semiambient, dependent on in-
formation from only one side of every target of harmony (though the side may vary
from target to target). Thus, and as will be shown in Sect. 4, the Maasai pattern is
weakly deterministic, and the Turkana pattern is not.

3 Maasai and Turkana

Maasai (Tucker and Mpaayei 1955; Hall et al. 1973; Archangeli and Pulleyblank
1994; McCrary 2001; Guion et al. 2004; Quinn-Wriedt 2013) and Turkana (Dim-
mendaal 1983; Vago and Leder 1987; Albert 1995; Noske 1996, 2000) are closely
related Eastern Nilotic languages. Both languages exhibit patterns of ATR harmony
operating over an inventory of nine contrastive vowels, four [+ATR] /i e o u/ and
five [−ATR] /I E A O U/; in both languages, [+ATR] spreads bidirectionally from
root and suffix vowels. Spreading vowels in this type of harmony pattern are called
DOMINANT, and alternating vowels are called RECESSIVE.

Note that there are four direct harmonic [+ATR]∼[−ATR] pairings among the
non-low vowels: i∼I, e∼E, o∼O, and u∼U. Significantly, the [−ATR] low vowel /A/

does not have a direct harmonic counterpart. In certain [+ATR] contexts, underly-
ing /A/ is raised (and also rounded) to become [o], an indirect harmonic relation-
ship dubbed RE-PAIRING in Baković (2000, 2002). This is where the similarities
between the Maasai and Turkana vowel harmony patterns end. The key difference
between them is the exceptionally dominant behavior of a set of [−ATR] suffix vow-
els present in the Turkana pattern but absent from the Maasai pattern, with signif-
icant consequences for the surface manifestation of re-paired /A/. The presence of
these exceptionally dominant [−ATR] suffix vowels in the Turkana case makes the
overall Turkana pattern unbounded circumambient and thus non-deterministic, which
can only be broken down into an interacting pair of contradirectional subsequential
functions. Conversely, the absence of exceptionally dominant [−ATR] vowels in the
Maasai case makes the overall Maasai case unbounded semiambient and thus weakly
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deterministic, which can be broken down into a non-interacting pair of contradirec-
tional subsequential functions.

Note that in the discussion that follows, we assume that (non-exceptional) domi-
nant vowels are underlyingly specified for the spreading value of the harmonic fea-
ture, [+ATR], and that alternating recessive vowels are underlyingly specified for the
opposite value, [−ATR]. Recessive vowels could alternatively be assumed to be un-
derlyingly unspecified for a value of the harmonic feature, and in fact such an analysis
has particular appeal in the case of Turkana because [−ATR] can then be reserved for
the exceptionally dominant [−ATR] suffix vowels (Noske 1996, 2000). For the pur-
poses of our argument about the differing levels of expressivity necessary to describe
these two patterns, however, nothing hinges on this matter of representation.

3.1 Maasai

Examples of [+ATR] spreading from roots in Maasai are shown in (5) below.8 The
contrast between (5a–5b) shows that [+ATR] spreads leftward from dominant root
vowels to preceding recessive prefix vowels, and the contrast between (5c–5d) shows
that [+ATR] spreads outward from dominant root vowels both to preceding recessive
prefix vowels and to following recessive suffix vowels.

(5) Root-controlled [+ATR] spreading in Maasai

a. /mI-kI-
√
rAñ/ −→ [mI-kI-

√
rAñ] ‘NEG-1PL-sing’

b. /mI-kI-
√
itoki/ −→ [mi-k-

√
intoki] ‘NEG-1PL-do.again’

c. /kI-
√
IdIm-U/ −→ [k-

√
IdIm-U] ‘1PL-be.able-PRES’

d. /kI-
√
ñorr-U/ −→ [ki-

√
ñorr-u] ‘1PL-love-PRES’

Some suffixes also cause [+ATR] spreading. Examples of suffix-induced harmony
are seen in (6). Observe that both the root meaning ‘wash’ and the intransitive suffix
surface as [−ATR] in (6a), but in the presence of the dominant applied suffix, all
root and prefix vowels surface as [+ATR] in (6b). In the same manner, the dominant
instrumental suffix transforms the [−ATR] root and prefixes in (6c) to [+ATR] in
(6d).

(6) Suffix-controlled [+ATR] spreading in Maasai

a. /
√
IsUj-ISO/ −→ [

√
IsUj-ISO] ‘wash-INTR’

b. /
√
IsUj-ISO-re/ −→ [

√
isuj-iSo-re] ‘wash-INTR-APPL’

c. /E-tE-
√
bEl-A/ −→ [E-tE-

√
bEl-A] ‘3SG-PF-break-PF’

d. /E-tE-
√
bEl-ie/ −→ [e-te-

√
bel-ie] ‘3SG-PF-break-INST’

We focus now on the special behavior of the recessive low vowel /A/. When a
[+ATR] dominant vowel occurs to the right of /A/, the low vowel blocks spreading
and is output faithfully as [A]. This is evident in (7). Observe that the first-person
plural prefix /kI/ undergoes harmony under the influence of the following dominant
vowel in the root /

√
dot/ ‘pull’ in (7a), but when the past tense prefix /tA/ occurs

8Note that we omit the transcription of tone on vowels because tone does not play a role in the harmony
patterns of Maasai and Turkana. Input-output discrepancies in cited data that are similarly unrelated to
harmony are passed over in silence.
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between the two (7b), the low vowel /A/ both fails to undergo harmony and prevents
the more peripheral /kI/ prefix from undergoing harmony. Comparing (7c–7d), we
see the same behavior from an /A/ in the root, which blocks leftward spreading orig-
inating from the dominant vowel of the /re/ suffix in (7d). Lastly, in (7e–7f) we see
that an /A/ in a less peripheral suffix also blocks leftward spreading of [+ATR] from
the /ie/ suffix.

(7) Leftward blocking behavior of /A/ in Maasai

a. /kI-
√
dot-Un-ie/ −→ [ki-

√
dot-uñ-ie] ‘1PL-pull-MT-APPL’

b. /kI-tA-
√
dot-Un-ie/ −→ [kI-tA-

√
dot-uñ-ie] ‘1PL-PAST-pull-MT-APPL’

c. /I-
√
duN-ISO-re/ −→ [i-

√
duN-iSo-re] ‘2SG-cut-INTR-APPL’

d. /I-
√
As-ISO-re/ −→ [I-

√
As-iSo-re] ‘2SG-do-INTR-APPL’

e. /A-
√
IpUt-AkIn-ie/ −→ [A-

√
IpUt-Akiñ-ie] ‘3SG-fill-DAT-APPL’

f. /E-
√
IpUt-A-rI-ie/ −→ [E-

√
IpUt-A-ri-jie] ‘3SG-fill-MA-N-APPL’

However, suffix /A/ alternates depending on whether a dominant [+ATR] vowel
occurs to its left. When following other recessive [−ATR] vowels, /A/ is output faith-
fully, as in (8a–8b). When following dominant [+ATR] vowels, though, /A/ under-
goes harmony and is output re-paired as [o], as in (8c–8d). Similarly, when /A/ is
flanked on either side by dominant [+ATR] vowels, as in (8e–8f)—compare (7e–7f)
above—it is output re-paired as [o] due to the presence of the dominant [+ATR]
vowel to its left.9

(8) Rightward re-pairing behavior of /A/ in Maasai

a. /In-
√
lIpON-A/ −→ [In-

√
lIpON-A] ‘FEM.PL-female-PROD’

b. /Ol-
√
mEn-A/ −→ [Ol-

√
mEn-A] ‘MASC.SG-despise-PROD’

c. /In-
√
mudoN-A/ −→ [in-

√
mudoN-o] ‘FEM.PL-relative-PROD’

d. /EN-
√
komon-A/ −→ [eN-

√
komon-o] ‘FEM.SG-pray-PROD’

e. /A-
√
duN-AkIn-ie/ −→ [A-

√
duN-okiñ-ie] ‘3SG-cut-DAT-APPL’

f. /E-
√
isud-A-rI-ie/ −→ [e-

√
isud-o-ri-jie] ‘3SG-hide-MA-N-APPL’

The harmony pattern in Maasai can be analyzed with two very similar rules spread-
ing [+ATR] in opposite directions, as in Archangeli and Pulleyblank (1994): a left-
to-right rule spreading [+ATR] to all following vowels (and re-pairing /A/ to [o]),
and a right-to-left [+ATR] spreading rule that is blocked by /A/. These rules do not
interact, and thus do not need not be ordered with respect to one another, because
the left-to-right rule only affects vowels to the right of a dominant [+ATR] vowel
and the right-to-left rule only affects vowels to the left of a dominant [+ATR] vowel.
Consider the hypothetical underlying vowel string /E A U i E A I/ in Fig. 3, with the
/i/ being the sole dominant [+ATR] vowel. Left-to-right spreading affects only the
final /E A I/ sequence, outputting it as [e o i], with re-pairing of /A/ to [o]; it does not
affect the realization of the initial sequence of vowels. Similarly, right-to-left spread-
ing outputs the initial /E A U/ as [E A u], with blocking by /A/, but has nothing to say
regarding the realization of the final sequence of vowels.

9Citing the example /En-
√

ÙoribA/ → [en-
√

ÙoribA] ‘rafters made of sticks,’ Quinn-Wriedt (2013: 158)
concludes that low vowels in roots do not alternate regardless of their position relative to dominant [+ATR]
vowels. This is technically inconsistent with the description of the Maasai pattern that we work with in the
text, but can be straightforwardly accommodated in the analysis.
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Fig. 3 Hypothetical example illustrating independence of left-to-right [+ATR] spreading (and re-pairing)
and right-to-left [+ATR] spreading in Maasai

The situation is only superficially different when recessive vowels lie between
dominant [+ATR] vowels. When a non-low recessive vowel is flanked by dominant
vowels, it is output as [+ATR]. This is consistent with the effect of either of the
two rules; in this context, we cannot determine which dominant vowel is responsible
for the harmonic assimilation of the non-low vowel. When the low recessive vowel
/A/ is flanked by two dominant vowels, it is output as [o], but in this context we
can uniquely determine that the dominant vowel responsible for the alternation is
the one to the left, because /A/ blocks spreading from the right. Since /A/ blocks
right-to-left spreading, in a flanking sequence like /e A i/, the /i/ to the right will not
cause assimilation (and re-pairing) of the /A/. The /e/ to the left, though, can spread
[+ATR] to /A/, and so the string is ultimately output as [e o i]—regardless of the
order of application between the two spreading rules.

In sum, the output quality of every vowel in Maasai depends on two sources of
information. The first source of information is the vowel’s underlying ATR speci-
fication, which determines whether it is a dominant (= spreading) or recessive (=
alternating) vowel. In the latter case, the second source of information is the output
ATR specification of either the preceding or the following vowel. Recessive vowels
to the left of a dominant vowel depend on the output ATR value of the following
vowel while recessive vowels to the right of a dominant vowel depend on the out-
put ATR value of the preceding vowel. Crucially, no individual vowel’s output qual-
ity depends on the ATR specifications of vowels on both sides. In other words, the
bidirectional ATR harmony pattern in Maasai is not unbounded circumambient, but
rather unbounded semiambient—recall Sect. 2.3, Def. 2 and Def. 3 above. This is
of course what makes the Maasai harmony pattern fit comfortably within Heinz and
Lai’s (2013) class of WD functions: it can be broken down into an HL composition
of two contradirectional subsequential functions, neither one of which marks up its
output in such a way that the other function has crucial access to that markup. Or, in
the stricter terms that we advocate in this article: the two functions do not interact and
can even be composed in either order, because for any given input symbol, its output
is determined by information on one side or the other, and never both simultaneously.

3.2 Turkana

As noted at the outset of this section, the bidirectional ATR harmony pattern in
Turkana is in relevant respects identical to the pattern in Maasai except for the ex-
istence and consequences of a set of exceptionally dominant [−ATR] suffix vowels.
We first establish the commonalities with the Maasai pattern. The contrast in (9a–9b)
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shows that [+ATR] spreads leftward from dominant root vowels to preceding reces-
sive prefix vowels, and the contrast in (9c–9d) shows that [+ATR] spreads outward
from dominant root vowels both to preceding recessive prefix vowels and to following
recessive suffix vowels.

(9) Root-controlled [+ATR] spreading in Turkana

a. /E-
√
kOrI/ −→ [E-

√
kOrI] ‘MASC.SG-ratel’

b. /E-
√
kori/ −→ [e-

√
kori] ‘MASC.SG-giraffe’

c. /E-
√
Em-I/ −→ [E-

√
Em-I] ‘3SG-fear-ASP’

d. /E-
√
los-I/ −→ [e-

√
los-i] ‘3SG-go-ASP’

Dominant suffix vowels also trigger [+ATR] spreading. The voice suffix /o/ and
the gerundial suffix /e/ in (10b, 10d) cause all other, recessive vowels in the word to
be output as [+ATR].

(10) Suffix-controlled [+ATR] spreading in Turkana

a. /E-A-
√
kOkO-Un-I/ −→ [E-A-

√
kOkO-Un-I] ‘3-TNS-steal-VEN-ASP’

b. /E-
√
kOkO-Un-I-o/ −→ [e-

√
koko-un-i-o] ‘3-steal-VEN-ASP-VOI’

c. /A-kI-
√
dOk/ −→ [A-kI-

√
dOk] ‘INF-K-climb’

d. /E-
√
dOk-Un-e/ −→ [e-

√
dok-un-e] ‘MASC.SG-climb-VEN-GER’

The final parallel between Maasai and Turkana is the behavior of the low vowel
/A/ in [+ATR] contexts. Examples (11a–11b) show that the low vowel of the in-
finitive prefix is output faithfully regardless of the ATR value of the root vowel. In
examples (11c–11d), we see that the low vowel of the root ‘beat’ is also output faith-
fully regardless of the presence of the dominant gerundial suffix vowel /e/ in (11d),
blocking spreading to the preceding recessive vowel /E/ of the masculine singular
prefix. Examples (11e–11f) further show that the low vowel of the habitual suffix
blocks spreading from the dominant nominalizing suffix vowel /u/.

(11) Blocking behavior of /A/ in Turkana

a. /A-
√
dOk-Un/ −→ [A-

√
dOk-Un] ‘INF-climb-VEN’

b. /A-
√
lim-Un/ −→ [A-

√
lim-un] ‘INF-tell-VEN’

c. /A-kI-
√
rAm/ −→ [A-kI-

√
rAm] ‘INF-K-beat’

d. /E-
√
rAm-e/ −→ [E-

√
rAm-e] ‘MASC.SG-beat-GER’

e. /A-
√
pEg-AAn-u/ −→ [A-

√
pEg-AAn-u] ‘GER-deny-HAB-NOM’

f. /A-
√
dAk-AAn-u/ −→ [A-

√
dAk-AAn-u] ‘GER-graze-HAB-NOM’

However, when a suffix low vowel follows a dominant [+ATR] root vowel, as
shown by the contrasts in (12a–12d), or when it is flanked on both sides by dominant
[+ATR] vowels (12e–12f), harmony (and re-pairing) obtains, and /A/ is output as
[o].10 Given that leftward harmony is blocked by low vowels, we must assume that
rightward spreading from the root is what causes /A/ to be output as [o] in (12e–12f);
compare (11e–11f) above.

10In his discussion of the Turkana pattern, van der Hulst (2018: 355) states that “[w]ithin morphemes,
[the] distribution [of the low vowel] is limited in such a way that it never occurs following an advanced
vowel,” and cites the form /E-

√
kAlees/ → [E-

√
kAlees] ‘SG-ostrich’ showing that a low vowel may occur

preceding a [+ATR] vowel within a morpheme. This is consistent with our description of the Turkana
pattern that we are working with in the text; cf. the inconsistency noted in fn. 9 for Maasai.
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(12) Re-pairing behavior of /A/ in Turkana

a. /E-
√
tIm-At/ −→ [E-

√
tIm-At] ‘FEM.SG-shoe-SG’

b. /E-
√
pur-At/ −→ [e-

√
pur-ot] ‘MASC.SG-beer-SG’

c. /E-
√
pEg-AAn-n-A/ −→ [E-

√
pEg-AAn-n-A] ‘3SG-argue-HAB-SG-VOI’

d. /E-
√
pup-AAn-n-A/ −→ [e-

√
pup-oon-n-o] ‘3SG-obey-HAB-SG-VOI’

e. /A-
√
tur-AAn-u/ −→ [A-

√
tur-oon-u] ‘GER-agile-HAB-NOM’

f. /A-
√
pup-AAn-u/ −→ [A-

√
pup-oon-u] ‘GER-obey-HAB-NOM’

The harmony patterns in Maasai and Turkana are thus far identical. However, there
is one crucial difference between the two: there are exceptionally dominant [−ATR]
suffix vowels in Turkana in addition to dominant [+ATR] suffix vowels. We assume
that these exceptional suffixes (or the vowels themselves) are lexically specified as
dominant and henceforth circle them in cited examples to distinguish them from
“normal” recessive [−ATR] suffix vowels. When an exceptionally dominant [−ATR]
suffix vowel co-occurs with a dominant [+ATR] vowel, the exceptionally dominant
vowel both resists becoming [+ATR] and imposes its own [−ATR] value on all pre-
ceding vowels, in a pattern that Baković (2000) refers to as “dominance reversal.”

Observe in (13a) that the dominant [+ATR] vowels of the root /
√
ido/ ‘give birth’

spread [+ATR] rightward to the recessive vowels of the ventive and aspect-marking
suffixes /Un/ and /It/, causing these suffixes to be output as [un] and [it], respectively.
In the presence of the exceptionally dominant [−ATR] instrumental-locative suffix
/ Et©/ (13b), the recessive vowel of the ventive suffix as well as the dominant [+ATR]
vowels of the root are all output as [−ATR].

(13) Dominance reversal (exceptional [−ATR] spreading) in Turkana

a. /
√
ido-Un-It/ → [

√
ido-un-it] ‘give.birth-VEN-ASP’

b. /A-k-
√
ido-Un- Et©/ → [A-k-

√
IdO-Un- Et©] ‘GER-K-give.birth-

VEN-INST.LOC’
c. /A-k-

√
InOk-A-kIn-I/ → [A-k-

√
InOk-A-kIn-I] ‘GER-K-light.fire-

EPI-DAT-V’
d. /E-

√
ibus-A-kIn-I/ → [e-

√
ibus-o-kin-i] ‘3-drop-EPI-DAT-V’

e. /E-
√
ibus-A-kIn- A©/ → [E-

√
IbUs-O-kIn- A©] ‘GER-drop-EPI-DAT-VOI’

The remaining examples in (13) illustrate what happens when the low vowel /A/

of the epipatetic suffix is in a fully [−ATR] context (13c), surfacing faithfully as [A];
when it is preceded by dominant [+ATR] vowels (13d), surfacing re-paired as [o];
and when it is flanked by dominant [+ATR] vowels to its left and an exceptionally
dominant [−ATR] suffix vowel to its right (13e), surfacing in this case as [O]. This is
of course the expected harmonic counterpart of [o], indicating that this vowel has in
some sense undergone [+ATR] harmony and thus re-pairing. Otherwise it could have
surfaced faithfully as [A], which would also harmonically agree with the exceptionally
dominant [−ATR] vowel.

There are some further details to be noted about the behavior of these exceptionally
dominant [−ATR] suffix vowels, as well as some differences in the relevant data cited
by Dimmendaal (1983) and Noske (2000). First, Dimmendaal (1983: 25–26) notes
that if a suffix with an exceptionally dominant [−ATR] mid vowel (/O/ or /E/) is af-
fixed directly to a root with a dominant [+ATR] mid vowel (/o/ or /e/), a harmony-
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blocking glide [j] is inserted between them: /A-k-
√
item- Et©/ → [A-k-

√
item-j Et©] ‘at-

tempt’; cf. (13b), where a (recessive) suffix intervenes between the same exception-
ally dominant [−ATR] suffix and another root with a dominant [+ATR] mid vowel.11

Second, Noske (2000: 781–782) claims that only mid vowels, and not high vowels,
undergo (leftward) [−ATR] spreading. Noske thus transcribes the form in (13b) as
[A-k-

√
ido-un- Et©], explicitly noting (2000: 781, fn. 8) that this differs from Dimmen-

daal (1983); the critical form in (13e)—not cited by Noske—would presumably be
[e-

√
ibus-o-kin- A©].12 We ascribe this difference between Dimmendaal’s (1983) tran-

scriptions and Noske’s to a dialect difference, and stick with Dimmendaal’s. Lastly,
Noske (2000: 782, (38)) cites examples with an exceptionally dominant [−ATR] suf-
fix vowel followed by a dominant [+ATR] suffix vowel, e.g. [E-k-IlOt- Ar©-e] ‘way of
washing.’ Noske states that this is “[t]he only construction type in which the two
types of [dominant] suffixes occur regularly,” but it is at least circumstantial evidence
that [−ATR] does not spread rightward from exceptionally dominant [−ATR] suffix
vowels. The fact that [+ATR] also does not spread leftward in this example could be
due either to the invariance of exceptionally dominant [−ATR] vowels or to the fact
that this particular exceptionally dominant [−ATR] vowel is /A/ and thus indepen-
dently expected to block [+ATR] spreading; for concreteness, we assume that both
reasons apply.

Two further things are also worth noting here. First, there is no readily apparent
phonological information to independently determine whether a given [−ATR] vowel
is recessive or exceptionally dominant; compare, for example, the recessive voice-
marking suffix /A/ in (11g, 11h) with the distinct, exceptionally dominant voice-
marking suffix / A©/ in (13e). Second, note in (13e) that the exceptionally dominant
[−ATR] vowel may be separated from the affected low vowel by another syllable; we
assume that this distance is in principle unbounded, just as we assume—following the
extensive literature on the analysis of vowel harmony—that the distance between any
trigger and potential target of harmony is in principle unbounded.

Analytically speaking, Maasai and Turkana both exhibit bidirectional [+ATR]
spreading, and in addition Turkana exhibits [−ATR] spreading. This additional part
of the pattern in Turkana has significant computational repercussions for the analy-
sis. Recall that the output of every alternating vowel in Maasai is dependent on two
sources of information: that vowel’s input specification, and the output specification
of a neighboring vowel on either side. In Turkana, the output of every alternating
vowel depends on additional information: whether there is a preceding dominant
[+ATR] vowel and whether there is a following exceptionally dominant [−ATR]
vowel. This is the key distinction between the Maasai and Turkana patterns. The out-
put of a recessive low vowel in the input in Turkana is not able to be determined based
solely on information about vowels to its left or about vowels to its right; it depends
on information from both sides, simultaneously.

11Glides in general disrupt harmony, such that following vowels “may be [+ATR] or [−ATR] (as with
vowels following the vowel /A/)” and preceding vowels “are [+ATR]” (Dimmendaal 1983: 20). This ac-
counts for a notable exception to van der Hulst’s (2018) generalization in fn. 10 that low vowels never
follow [+ATR] vowels within morphemes: the form [Ni-

√
turkAnA] ‘the Turkana people’ has a “more fre-

quently used form” [Ni-
√

turkwAnA] with a harmony-disrupting glide (Dimmendaal 1983: 20).
12Noske (2000: 778) also cites the form in (13a), but transcribes the root as [edo] in this case rather than
as [ido].
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Fig. 4 Hypothetical example illustrating dependence of right-to-left [−ATR] spreading on left-to-right
[+ATR] spreading (and re-pairing) in Turkana

Consider the hypothetical underlying vowel string /i E A U E©/ in Fig. 4, where /i/

is a dominant [+ATR] vowel and / E©/ is an exceptionally dominant [−ATR] vowel.
The output of the vowels in the medial string of recessive vowels /E A U/ depends on
both of these flanking sources of information. If only the dominant [+ATR] vowel
were to the left, and the exceptionally dominant [−ATR] vowel were not also to the
right, then the vowels in this medial string would all be output as [+ATR], [e o u],
with the /A/ re-paired to [o]. But because the exceptionally dominant [−ATR] vowel
is also to the right, all vowels to its left are instead output as [−ATR], [I E O U]. The
fact that both sources of information are critical is made most obvious by the fact
that the /A/ is output as [O]: the fact that it is [−low] is due to the dominant [+ATR]
vowel to the left, and the fact that it is [−ATR] is due to the exceptionally dominant
[−ATR] vowel to the right.

Furthermore, both sources of information could in principle be at an unbounded
distance from any of the vowels between them. This dependency is thus consistent
with the unbounded circumambient class of patterns; recall Sect. 2.3, Def. 2. The
Turkana pattern should thus not be able to be described with an HL composition
and to be classified as WD in the way that the Maasai pattern is, and yet an EM
composition analysis of the Turkana pattern exists in which the first, inner function
of the composition is neither alphabet- nor length-increasing, consistent with Heinz
and Lai’s (2013) definition.

We briefly sketch this analysis here before presenting it in more technical detail
in Sect. 4.3. The inner, left-subsequential function spreads [+ATR] from underlying
dominant [+ATR] vowels from left to right, blocked only by following exception-
ally dominant [−ATR] vowels. Underlying /A/ is also re-paired by this function to
intermediate |o|, which of course is representationally identical to an intermediate |o|

from underlying /o/ or /O/. The outer, right-subsequential function then acts on this
intermediate representation, spreading [+ATR] from dominant [+ATR] vowels and
now also [−ATR] from exceptionally dominant [−ATR] vowels, this time from right
to left. Spreading of [−ATR] is unimpeded, and spreading of [+ATR] is blocked
both by low vowels and by exceptionally dominant [−ATR] vowels.13 All instances
of intermediate |o|, whether from underlying /A/, /o/, or /O/, will surface as [O] if
and when this function spreads [−ATR] to them.

The inner function thus increases neither the size of the input alphabet nor the
length of the string, but the two functions do crucially interact. This is most obvi-

13But recall from the discussion below example (13) that we know of no examples that crucially require
[+ATR] spreading to be blocked by non-low exceptionally dominant [−ATR] vowels.
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ous in the case of flanked /A/: it must first be re-paired to |o| by the inner, left-
subsequential function, which crucially enables it to be output as [O] by the outer,
right-subsequential function.14 We thus maintain that Heinz and Lai’s (2013) reliance
on the absence of markup in their definition of weak determinism is insufficient, and
that instead the absence of function interaction is key. When the output of a given
element in a string depends on information either unboundedly far to the left or un-
boundedly far to the right, as it does in Maasai, no interaction between composed
contradirectional subsequential functions is necessary, but interaction is necessary
when it depends on information both unboundedly far to the left and unboundedly
far to the right, as it does in Turkana.

4 Revising the definition of weak determinism

In the previous section we demonstrated that the nature of the dependencies in the
harmony patterns of Maasai and Turkana are distinct: that the Turkana pattern is
unbounded circumambient, and that the Maasai pattern is unbounded semiambient.
Despite this difference, Heinz and Lai’s (2013) formal definition of weak determin-
ism treats the two patterns as equivalent since they can both be broken down into two
contradirectional subsequential functions that involve neither alphabet- nor length-
increasing markup.

In Sect. 4.4, Def. 6 below, we offer a formal definition of weak determinism that
correctly distinguishes between unbounded semiambient and unbounded circumam-
bient processes and which centers the concept of interaction, defined less formally
in Sect. 2.1, Def. 1 above, and to be defined more formally in Sect. 4.2, Def. 5 be-
low. We define the WD functions “from above,” directly in terms of a restriction on
ND functions (recall Sect. 2.3), in contrast with Heinz and Lai’s (2013) definition
“from below” in terms of restricted compositions of contradirectional subsequential
functions following Elgot and Mezei’s (1965) result relating the ND functions to
compositions of subsequential functions (recall Sect. 2.2). In doing so, as we shall
see, the presence of interaction in ND functions and their absence in WD functions
becomes more clear.

In general, an ND function may use information from an unbounded distance
in both directions to determine the output for any given input symbol of a given
input string. Our proposed restriction for the definition of WD functions requires
that for any given output position, the function only ever needs unbounded access
in one direction, but that direction may vary from one point in any given string to
another. For example, two iterative phonological processes proceeding in opposite

14This /A/→|o|→[O] derivation looks like feeding, but at the level of the individual feature changes it is
technically a Duke of York derivation (Pullum 1976; McCarthy 2003). The additional, re-pairing change of
/A/→|o| makes the ultimate segmental result distinct from the prototypical Duke of York derivation A →
B → A. But separating re-pairing from harmony reveals a feeding Duke of York derivation (McCarthy
2003; Gleim 2019). With specific feature changes double-underlined: first [+low, −ATR] /A/ changes
to [+low, +ATR] |5|, which then feeds the further re-pairing change to [−low, +ATR] |o|, which then
undergoes the dominance reversal change to [−low, −ATR] [O]. The first change feeds the second—that
is, re-pairing applies because [+ATR] harmony creates a non-structure-preserving [+low, +ATR] vowel—
but the third change simply reverses the first.
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directions where neither process changes the conditions or result of (nonvacuous)
application of the other (as in the analysis of Maasai) will never result in an input
string w = x1x2 . . . xi . . . xn where there is some xi whose associated output depends
on information from both directions: either one process will apply, the other will ap-
ply, neither process will apply, or if both apply, those applications must result in the
same outcome. (These last cases meet the definition because it can be determined that
the process applies without considering information only obtainable from both direc-
tions.) We formalize this concept using an automaton called a bimachine (Schützen-
berger 1961; Eilenberg 1974), use it to introduce a more precise definition of inter-
action, show how interaction cleanly distinguishes the Maasai and Turkana patterns,
and then discuss how this relates to previous bottom-up formulations of weak de-
terminism centered on “markup” and interaction of contradirectional subsequential
functions.

4.1 Non-deterministic regular functions and bimachines

A BIMACHINE is the canonical machine representation for regular functions
(Schützenberger 1961; Eilenberg 1974; Reutenauer and Schützenberger 1991).
Briefly, a bimachine is defined by two deterministic finite-state automata, L and
R, that read the input from opposite directions and a simple output function ω that,
given a tuple containing an input symbol xi and the state of each automaton be-
fore it reads xi (qLj for L and qRk for R), maps that tuple to an output string wi .
Equivalently, bimachines can be viewed as explicitly determinized versions of func-
tional (one-way) non-deterministic finite-state transducers (NDFSTs)15 where deter-
minization is made possible by the summary of information from both directions
provided by the contradirectional automata. That is, for a given bimachine, every
“joint state”

(
qLj , qRk

)
of the bimachine—at any given point for any given input

word—corresponds to some state of the bimachine’s corresponding NDFST (Mihov
and Schulz 2019: Ch. 6, Sect. 2; Lhote 2018: Sect. 3.1).16 In this sense, bimachines
provide expressivity equal to that of NDFSTs. Crucially, for the purposes of this ar-
ticle, bimachines provide clarity and ease of use that are notoriously not offered by
NDFSTs, and this is why we employ bimachines here.

Assessing the necessity of unbounded circumambient information is critical to de-
termine membership in the WD vs. the ND classes of functions. Because bimachines
make explicit the directionality of all information necessary to determine the output
associated with each input symbol, we adopt them here as the clearest representation
for defining weak determinism and differentiating it from non-determinism. Bima-
chines offer not only a correct definition but also a clearer definition of the intended
scope of the class of WD functions and how it relates to previous work on the bound-
ary between ND and WD (Heinz and Lai 2013; Jardine 2016). Finally, bimachines

15A one-way NDFST is FUNCTIONAL if it maps each complete input string to at most one output string;
such a transducer may nevertheless exhibit incremental non-determinism in which state(s) it transitions
to as it reads a string from one edge to the other and what the output might be, but by defintion of being
functional, by the end of the input string at most a single unique output string must be picked out. Except
where noted, every reference to an NDFST henceforth will be to a functional one-way NDFST.
16In general, multiple joint-states of a bimachine may correspond to a given state of an equivalent NDFST.
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Fig. 5 Definitions of left (L) and right (R) automata. Each automaton is defined over an input alphabet
(X), a set of states (QL/R), a designated initial state (qL

i
/qR

i
), and a state transition function (�L/R).

Note that we follow a common stylistic convention for bimachines where the right automaton’s transition
function has its argument order flipped (�R :QR × X → QR) relative to that of the left automaton
(�L :X × QL → QL)

Fig. 6 An example run of a bimachine (L,R, ω) over an arbitrary string. The i-th output string wi is the
value of ω on (1) the state qL

j
of L after reading input symbols x<i , (2) the i-th input symbol xi , and

(3) the state qR
k

of R after reading input symbols x>i . Adapted with permission from Bojańczyk and
Czerwiński (2018)

are theoretical tools that offer a deterministic representation of regular functions that
obviates consideration of new and inventive forms of markup when considering the
complexity of a string function. We now provide a more explicit characterization of
bimachines and the notation we will adopt here.

Def. 4 A bimachine (L,R,ω) that calculates a regular function f :X∗ → Y ∗ is de-
fined by a left-to-right automaton L, a right-to-left automaton R, and an output func-
tion ω :QL × X × QR → Y ∗ that maps triples of a state from L (QL), a symbol of
the input X, and a state from R (QR) to a substring of the output Y ∗.

An inventory of the components that define L, R, and their transition functions
is given in Fig. 5.17 The computation of an input-output mapping by a bimachine is
illustrated schematically in Fig. 6.

For an input word w = x1x2 . . . xi . . . xn−1xn, the computation proceeds as follows.
First, the series of state transitions of each of the two automata is calculated in the
usual fashion. Then the state sequences from each of the two automata are aligned

17Final states are not included here among the components that define a bimachine’s automata because
(without loss of generality) we assume Schützenberger (1961)-style bimachines that implement total func-
tions, meaning that they are defined for every input string. It is conventional in this setting to either omit
discussion of final states or to (equivalently) declare that every state is a final state.
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into pairs. Finally, using the definition of the output function ω, the appropriate output
string is emitted for each pair of automata states and their associated input symbol.
That is, if before reading an input symbol xi from the left, the left automaton L is in
state qLj , and before reading xi from the right, the right automaton R is in state qRk ,
then the output of xi is determined by ω

(
qLj , xi, q

R
k

)
.

We close this introduction to bimachines and their interpretation with three ob-
servations: one on the correspondence between bimachines and more familiar NDF-
STs, one on the interpretation of the output function, and one on the relevance of
bimachines for formal theories of phonology that do not obviously make use of su-
perficially similar representations. First, as briefly mentioned earlier, the relationship
between bimachines and NDFSTs is straightforward. Each pair of automata states
of the bimachine can be interpreted as a single state of an NDFST, and the bima-
chine’s output function performs a function analogous to the NDFST’s transition re-
lation/output function (see e.g. Mihov and Schulz 2019: Ch. 6, Sect. 2 and Lhote
2018: Sect. 3.1 for details). This correspondence between bimachines and NDFSTs
highlights that every state of a functional NDFST can be factored into information
about PREFIXES (= substrings originating at the left edge), plus information about
SUFFIXES (= substrings originating at the right edge), relative to the position asso-
ciated with the current state after an NDFST reads some partial input string. This
intuition will be useful when considering the relationship of bimachines to EM com-
positions and hence also when considering the relationship of the definition of the
WD functions presented here to the approaches of previous definitions.

Second, note that the output function of a bimachine ω :QL × X × QR → Y ∗
implementing a regular function provides a ‘local’ summary of that function’s
behavior—it describes everything we need to know about what output each input
symbol gets mapped to under what CONTEXT, described by a pair of states (qLj , qRk ).
Because each left-automaton state corresponds to a set of prefixes and each right-
automaton state corresponds to a set of suffixes, each of the state pairs that can ac-
tually occur together in a given bimachine and define a context for ω corresponds
to a set of circumfixes (= contexts). In more linguistically familiar terms, the out-
put function ω of a bimachine is essentially a carefully orchestrated set of rewrite
rules defining the contextualized behavior of the regular function associated with the
bimachine. Each state of a reachable state pair corresponds directly to the regular
expressions of symbols (usually feature vectors) that define a lefthand (or righthand)
context in a traditional rewrite rule like A −→ B / C — D .

We close by summarizing the significance of bimachines for phonological for-
malisms that do not appear to use anything resembling a finite-state transducer (or bi-
machine) to model string functions. First, recall from Sect. 2.1 that any phonological
formalism that involves a function mapping an input string to an output string (usu-
ally a UR �→SR map) has some presentation-independent complexity indicating the
minimum expressivity required to implement that function; recall also from Sect. 1
that complexity is organized in terms of classes of functions—e.g. input strictly lo-
cal, subsequential, etc. Each of these classes usually has one or more MACHINE-
INDEPENDENT or EXTENSIONAL CHARACTERIZATIONS and usually has one or
more CANONICAL machines that characterize any function in that class. Briefly, a
machine-independent or extensional characterization of a function f :X∗ → Y ∗ in
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some class C depends only on properties of the mapping f between input string and
output string—not on any specific representation (e.g. phonological formalism) or
implementation of that input-output mapping. A canonical machine of some type for
f is usually unique, has a minimal number of states relative to all machines in class
C that implement f , and has some relatively transparent connection between the def-
inition of its components and at least one machine-independent characterization of f .
A machine implementing some function f is a concrete representation for working
with or analyzing f , and a machine-independent characterization may be unwieldy:
a canonical machine for f offers some of the best of both worlds—concreteness,
uniqueness, and interpretability. In the present context, every regular function has an
associated canonical bimachine, generally comparable to the status that e.g. a (mini-
mal) deterministic one-way finite-state automaton has for a regular language and that
an onward subsequential transducer has for a subsequential function (Oncina et al.
1993: Sect. 3; Choffrut 2003; Heinz and Lai 2013: Sect. 2.1).18

4.2 Interaction

Here we discuss a general definition of interaction between regular functions inspired
by the linguistic usage of the term, and describe the role of interaction in ordered
compositions of contradirectional subsequential functions (EM compositions) that
can describe unbounded circumambient patterns.

In an interacting composition the first function f to apply to a word w causes a
change in the behavior of the second function g to apply relative to what would have
occurred if g had simply been applied to w instead of to f (w); the net result is an
ND function g ◦f whose behavior is “more than the sum of its parts,” i.e. not simply
the union of what one would expect from applying g to w and applying f to w.

As noted at the end of Sect. 4.1, the output function ω :QL × X × QR → Y ∗
of a bimachine summarizes the local input-output behavior of the bimachine in any
given context, where “context” is completely summarized by the pair of states of
the bimachine’s automata reading the string context on each side of a given position
within the input string. Recall also that a canonical machine for a given function f

offers a concrete, unique, and interpretable representation of f . For these reasons,
bimachines provide us with precisely the right machinery to operationalize the con-
cept of interaction. Consequently, as we argue, bimachines enable us to define weak
determinism in a way that correctly reflects the difference between unbounded cir-
cumambience and unbounded semiambience and that captures the linguistic intuition
that an interacting composition involves a “change in behavior” of g ◦f relative to
the behavior of g and the behavior of f individually. Furthermore, this approach has
computational merit, facilitating future exploration of the properties held by the out-
put functions of canonical bimachines, due to its machine-independent foundation,
which we describe now.

18See Heinz (2018: Sect. 2) for explicit discussion of the relationship between phonological formalism,
formal language theory, and intensional vs. extensional characterizations of a language class or function
class; compare this with e.g. McCollum et al. (2020a: Sect. 6) for a differing view of the role and signifi-
cance of formal language theory in phonological theory with respect to explanation (as opposed to theory
qua formalism) and typology.
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Fig. 7 The three order-preserving ways the input ab could be mapped by some function f to the output
ab

Bojánczyk (2014: Thm. 2.1 and fn. 3) shows that if we have a specific kind of
what a phonologist would call a correspondence relation for a regular function f ,
then we can define a machine-independent characterization—and therefore a canon-
ical bimachine—for that function. Briefly, a function f augmented with ORIGIN SE-
MANTICS is a normal string function equipped with a specific kind of correspondence
relation: an ORIGIN FUNCTION �w,f (w) :N → N which maps, for every (input word,
output word) pair, each position j of the output word f (w) to the position i of the
symbol in the input word that caused position j to have the symbol it does (see e.g.
Dolatian et al. 2021 for discussion in a linguistic setting). For example, consider
the behavior of an unknown regular function f on an input word w = ab such that
f (w) = ab. Each of the correspondence relations (“origin graphs”) in Fig. 7 rep-
resents a possible origin semantics for how f (w) = ab could be the case for some
function f equipped with origin semantics. On the left, f associates input a with
output a and input b with output b, in one-to-one fashion. In the middle, f associates
input a with output ab and input b with no output symbol. On the right, f associates
input a with no output symbol and input b with output ab.

For every regular function, then, if we have an origin semantics for it, we can
define a canonical bimachine with a canonical output function ω :QL × X × QR →
Y ∗ driven by an associated set of canonical state pairs (Bojánczyk 2014: Thm. 2.1 and
fn. 3). This means that for every regular function equipped with origin semantics,
we have a straightforward path to a machine-independent characterization of that
function, which we can manipulate through a canonical bimachine. This machine-
independent characterization of regular functions with origin semantics is that every
such function f necessarily has a unique finite set of equivalence classes of two-
sided contexts, and each of these equivalence classes has a function that maps an
input symbol x to an output (Bojánczyk 2014, fn. 3; see also the presentation of
origin semantics in Filiot 2015: Sect. 5.4).

The total set of equivalence classes of contexts corresponds to the reachable state
pairs of a canonical bimachine for f , which can be used to define the output function
ωf : QL × X × QR → Y ∗. In short, the behavior of an ND function f is summa-
rized by the output function ω and the set of reachable state pairs of f ’s canonical
bimachine (per Sect. 4.1). Accordingly, we can define a NON-INTERACTING compo-
sition g ◦f as one where the composition’s behavior is exactly the sum (union) of its
composands, and an INTERACTING composition as one where something is added or
removed relative to the behavior of its composands.

Def. 5 Given length-preserving functions g,f,g ◦f :X∗ → X∗ with origin-seman-
tics and canonical bimachines whose output functions are given by ωg , ωf , and
ωg ◦f , the composition g ◦f is a non-interacting composition iff ωg ◦f reflects all
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and only the changes that ωg makes (in the contexts ωg makes them) plus the changes
that ωf makes (in the contexts ωf makes them). If instead for g ◦f there exists at
least one context (p, s) and input symbol x where the condition above fails to hold,
the composition g ◦f is an interacting composition at x in the context (p, s).

While the number of unique contexts (p, s) that exists is in principle infinite, bi-
machines partition the set of contexts into a finite number of equivalence classes,
as described above. In this way, the finiteness of bimachines is critical to the op-
erationalization of this definition of (non-)interaction. Once contexts are mapped to
the reachable state pairs of some canonical bimachine for the composition, then the
reachable state pairs of the composition can be related to the reachable state pairs
of each of its composands by applying the definition of bimachine composition (see
Peikov 2007: Sect. 4 or Mihov and Schulz 2019: Ch. 6, Sect. 4). The details of this
construction lie beyond the scope of this article; importantly, it is precisely the use of
bimachines that allows this definition of interaction to be effectively operationalized,
casting a solid foundation for the definition of weak determinism that we propose.

4.3 The computational distinction between the Maasai and Turkana harmony
patterns

We now show how bimachines bear out the difference between the unbounded semi-
ambience of the Maasai pattern and unbounded circumambience of the Turkana pat-
tern, and in doing so, we demonstrate how bimachines accentuate the necessity of
interaction that is core to the Turkana pattern.

Consider the bimachine for Maasai harmony in Fig. 8 and its run in Fig. 9 on an
informative underlying form, where the low vowel /A/ is both preceded and followed
by dominant [+ATR] vowels.

The top row of Fig. 9 shows the state transitions made by the left automaton L
as it reads the input symbols in the second row from left to right, and the third row
shows the state transitions made by the right automaton R as it reads the same input
symbols from right to left. Each symbol of the surface form, shown on the last row, is
determined by the output function ω based on the input symbol (xi ) and the states of
L and R (qLj and qRk ) before reading xi . This is highlighted in the figure for the /A/ in
the form that is both preceded and followed by dominant [+ATR] vowels. According
to the output function ω in Fig. 8, line (a), all that matters when the input symbol
is /A/ in Maasai is whether the prior state of L is qL2 —that is, whether a dominant
[+ATR] vowel has already been read to the left of the /A/. In short, only unbounded
semiambient information is required in the computation of Maasai harmony.

In the Maasai bimachine representation in Fig. 8, the automata states keep track of
whether the information from their causal past (prefixes for the left automaton L, suf-
fixes for the right automaton R) licenses a change or not. The states labeled qL2 (for
L) and qR2 (for R) are the states that license spreading; other states bookkeep whether
the machine has encountered a spreading trigger, a blocker, or word boundaries. The
output function ω is then defined in a piecewise fashion. Crucially, note that the out-
put symbol never depends on both information from the left and information from the
right. That is, any conjunction within the conditions of the piecewise-defined output
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Fig. 8 Left automaton L (top left), right automaton R (top right), and output function ω (bottom) of a
bimachine for the Maasai pattern. Transition qL1 → qL2 initiates left-to-right spreading of [+ATR] and
transition qR1 → qR2 initiates right-to-left spreading of [+ATR]

Fig. 9 Run of the Maasai bimachine in Fig. 8 on the input /A-
√

duN-AkIn-ie/, resulting in the output
[A-

√
duN-okin-ie] ‘3SG-cut-DAT-APPL’ (8e). The downward arrows indicate the semiambient information

needed by the output function ω to determine the output [o] from input /A/ in this context

function can be defined using states from at most one of the two automata. The im-
plicit ordering of components of a piecewise function definition means, for example,
that line (c) of the output function ω is only used if the conditions for lines (a–b) fail
to apply to the current input—i.e. if the negation of conditions for all lines prior to
(c) hold. This may superficially appear to suggest that line (c) requires information
not only about the righthand side of the string, but also the lefthand side; however,
lines (a–c) can be re-ordered without changing the behavior of the string function,
demonstrating that information from both sides of the string is not in fact necessary
to determine any output string.

In contrast, recall that in the Turkana harmony pattern, the realization of a (suffix)
low vowel depends on information on both sides of the vowel: whether there is a
preceding dominant [+ATR] vowel and whether there is a following exceptionally
dominant [−ATR] suffix vowel. Consider now the bimachine for Turkana harmony
in Fig. 10 and its run in Fig. 11 on an informative underlying form, where the low
vowel /A/ is preceded by dominant [+ATR] vowels and followed by an exceptionally
dominant [−ATR] suffix vowel.

As before, the top row of Fig. 11 shows the state transitions made by the left au-
tomaton L as it reads the input symbols in the second row from left to right, the third
row shows the state transitions made by the right automaton R as it reads the same in-
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Fig. 10 Left automaton L (top left), right automaton R (top right), and output function ω (bottom) of
a bimachine for the Turkana harmony pattern. Transition qL1 → qL2 initiates left-to-right spreading of
[+ATR], transition qR1 → qR3 initiates right-to-left spreading of [+ATR], and transitions qR{1,3} → qR2
initiate right-to-left spreading of [−ATR]

Fig. 11 Run of the Turkana bimachine in Fig. 10 on the input /E-
√

ibus-A-kIn- A©/, resulting in the out-
put [E-

√
IbUs-O-kIn- A©] ‘GER-drop-EPI-DAT-VOI’ (13e). The downward arrows indicate the circumambient

information needed by the output function ω to determine the output [O] from input /A/ in this context

put symbols from right to left, and the last row shows the surface form determined by
the output function ω based on

(
qLj , xi, q

R
k

)
triples. This is highlighted in the figure

for the /A/ in the form that is preceded by dominant [+ATR] vowels and followed by
an exceptionally dominant [−ATR] suffix vowel. According to the output function ω

in Fig. 10, lines (a–b), when the input symbol is /A/ in Turkana it matters whether
the prior state of L is qL2 —that is, whether a dominant [+ATR] vowel has already
been read to the left of the /A/—and whether the prior state of R is qR2 —that is,
whether an exceptionally dominant [−ATR] vowel has already been read to the right
of the /A/. In short, unbounded circumambient information is crucially required in
the computation of Turkana harmony.
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The bimachine representation for Turkana harmony in Fig. 10 makes clear the
origins of the information necessary to determine any given output symbol. The two-
sided context that determines whether an input low vowel /A/ will ultimately be out-
put as [O] can be read directly from the first line (a) of the bimachine output function
ω; else-wise, the second and last lines (b, g) determine whether input /A/ will be
output as [o] or faithfully as [A], respectively.19 When the left automaton L is in state
qL2 , the right automaton R is in state qR2 , and the current input symbol is /A/, then
it will be mapped to [O]. All other lines in the output function require information
about the state of only one of the bimachines’s two automata. Crucially, the realiza-
tion of the low vowel depends on circumambient information, from both the left and
the right. Together with the knowledge that the states of the left and right automata
encode information from unboundedly far to each side, we can see that this differs
from the output function for Maasai in Fig. 8.

We have focused on the unbounded circumambience required to map /A/ to [O]

in this analysis. However, it is also the case that all other input-output ATR map-
pings in Turkana participate in an unbounded circumambient pattern. Whereas the
unbounded circumambience of the low vowel’s realization is easy to see from line
(a) of the output function of the bimachine in Fig. 10, the unbounded circumambi-
ence of the other vowel mappings is obscured by the implicit ordering of the output
function’s top-to-bottom evaluation as a piecewise function. That is, the conditions
that license [+ATR] spreading, lines (e–f), depend on unbounded circumambient in-
formation because they include not only the determination that there is a dominant
[+ATR] vowel to the left of the input index, but also that there is not an exception-
ally dominant [−ATR] vowel to the right of the input index—because otherwise,
the prior-ordered lines (c–d) would have already ensured leftward [−ATR] spread-
ing. Both the conjunctive internal structure of output condition (a) and the non-trivial
ordering of conditions (c–d) and (e–f) belie the unbounded circumambience of the
Turkana pattern.

4.4 Weakly deterministic functions and bimachines

To crystallize the intuition that WD ought to be the class that captures unbounded
semiambient patterns, we can define the WD functions as the subclass of ND func-
tions definable with a bimachine whose output function meets a specific condition:

Def. 6 A function f is weakly deterministic iff there exists a bimachine implementing
f (per Def. 4) such that its output function ω exhibits the following property for all
qL, x, y, and qR:

ω
(
qL, x, qR

) = y ⇐⇒
(
∀r ∈ QR,ω

(
qL, x, r

) = y
)
∨

(
∀l ∈ QL,ω

(
l, x, qR

) = y
)

In words, Def. 6 states that if ω is the output function of a WD bimachine and
it maps x to y when its left automaton is in state qL and its right automaton is in

19Note, we have split up the conditions in the output function for [−ATR] and [+ATR] spreading into
a base case on one line and a recursive spreading case on another because of typesetting, clarity, and
consistency; there is no other significance to this choice.
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state qR, then either the input-output mapping ω
(
qL, x, qR

) = y is explainable by
qL alone or it is explainable by qR alone: either ω mapping x to y is licensed by
the left state being qL or it is licensed by the right state being qR. Note that for a
given bimachine implementing a WD function and a given input word, the direction
to “look” that determines the output for a given input symbol may be leftwards for
some symbols and rightwards for others, and it is not in general a priori predictable
which direction the determining information will come from.

To be clear, per the semantics of inclusive-or (∨), Def. 6 does not preclude that
mapping x to y may be independently licensed by both the current left state and the
current right state; it simply forbids bimachines where the output of some symbol x

depends on simultaneous knowledge of both the left state and the right state having
particular values. The definition also does not require a priori knowledge or com-
putation of which one side (if any) has information that licenses mapping input x to
output y. Operationally, in a bimachine known to be weakly deterministic, one may
look at the current input symbol x and left automaton state qL and check if that state
alone licenses mapping x to some y, and if qL does not, then one may proceed to
check if x and the current right automaton state qR alone licenses mapping x to some
y. Moreover, again given the semantics of inclusive-or, it will never matter which or-
der one looks at the left vs. right states, or that sometimes one ends up looking at
both to check if at least one licenses mapping x to y. Instead, what matters is the
directionality of information that licenses mapping input x to output y.

In solidifying the boundary between weak determinism and non-determinism, we
have focused exclusively on patterns that require the use of information at an in prin-
ciple unbounded distance away from the target of a change, and accordingly, we have
centered the directionality of information in our discussions of that boundary. This
may leave one with questions about how subsequential patterns with bounded bidi-
rectional contexts are handled by our definition. Consider A −→ B / C — D . While
the most intuitive origin semantics for this map does require information from both
sides and hence the map may appear superficially non-deterministic, the information
required is not unboundedly far in either direction and there are alternative origin
semantics that are clearly input strictly local. The relevant left-to-right origin seman-
tics maps every input substring CA to the empty string and then either observes a
D and maps it to CBD or observes a non-D symbol X and maps it to CAX; the
relevant right-to-left origin semantics is symmetrically analogous, mapping AD to
the empty string and then either observing a C and mapping it to CBD or observing
a non-C symbol X and mapping it to XAD. In both origin semantics, we know that
a function only requires lookahead corresponding to at most one symbol beyond the
current “focal” position. The left-to-right origin semantics can be implemented by a
bimachine where the left automaton does all the work, while the right automaton has
only a single state (i.e. does nothing); similarly, the right-to-left origin semantics can
be implemented by a bimachine where the right automaton does all the work. The
existence of both of these origin semantics independently shows that the string func-
tion defined by A −→ B / C — D is clearly subsequential, and in fact input strictly
local. Output mappings for all input words can be performed with information from
only one of the bimachine’s automata.

If the selection of an output symbol only ever depends on information at an un-
bounded distance from at most a single and consistent direction that is always known
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a priori, then it is a subsequential function. Alternatively, if the selection of an out-
put symbol only ever depends on information at an unbounded distance from at most
a single direction that is not necessarily known a priori and need not in general be
uniform from symbol to symbol within the same input word, then it is a weakly
deterministic function as defined in Def. 6 and as exemplified by our analysis of
Maasai. Alternatively, if the selection of an output symbol sometimes depends on
information at an unbounded distance in both directions simultaneously, then it is a
non-deterministic regular function, as exemplified by our analysis of Turkana. In this
sense, our definition of weak determinism in Def. 6 aligns precisely with the def-
inition of interaction introduced in Def. 1 and crystalized in Def. 5: ND functions
involve interaction, while WD functions do not.20

5 Discussion

This work presents a novel formal definition of weak determinism, centering inter-
action as the core property that distinguishes weakly deterministic maps from non-
deterministic maps within the computational complexity hierarchy of regular func-
tions illustrated in Fig. 1. Centering interaction as the arbiter of this boundary, rather
than markup (Heinz and Lai 2013; McCollum et al. 2018; Lamont et al. 2019; O’Hara
and Smith 2019; Smith and O’Hara 2019) or lookahead (Jardine 2016; McCollum
et al. 2020a), strengthens the status of weakly deterministic maps as a computational
class of linguistic interest because it is a computationally stronger and linguistically
more natural concept than those centered in previous formal definitions.

5.1 Interaction is linguistically natural

Interaction meshes well with existing concepts in linguistics. Most obviously, it has
a great deal in common with the type of interaction that motivates serial rule order-
ing in the SPE tradition of Chomsky and Halle (1968) to distinguish e.g. “feeding”
from “counterfeeding” and “bleeding” from “counterbleeding” (see Baković 2011;
Baković and Blumenfeld to appear; and references therein). After all, a pair of inter-
acting SPE rewrite rules is essentially a specific ordered composition of regular func-
tions g ◦f (Johnson 1972; Kaplan and Kay 1994). There is also much in common
between our concept of interaction and the type of interaction that motivates con-
straint ranking and weighting in the traditions of OT (Prince and Smolensky 2004)
and HG (Legendre et al. 1990). Insights gained from the study of any of these forms
of interaction are thus highly likely to inform the study of the others—as they indeed
already have—see for example Norton (2003), Baković (2007, 2011, 2013), and ref-
erences therein for relevant formal comparisons of the descriptive and explanatory
similarities and differences between these serial rule-based and parallel constraint-
based theoretical frameworks.21

20Proofs are available upon request and will be included in a related manuscript in preparation.
21The focus in the text on the extremes of this continuum is not meant to ignore work aiming for some
kind of balance between serialism and parallelism; e.g. Stratal OT (Kiparsky 2015), Harmonic Serialism
(McCarthy 2010), and Serial HG (Pater 2012).
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Bringing our focus back to the more immediate concerns of this article, interac-
tion unites all cases of unbounded circumambience and is not limited to those cases
that satisfy arbitrary criteria resulting from particular decisions about what counts
as markup or about what it means for a function to “look ahead” in the string. The
Turkana harmony pattern is an instructive case in point. There is clear linguistic evi-
dence for bidirectional spreading from dominant [+ATR] vowels, for low vowels un-
dergoing left-to-right but not right-to-left spreading of [+ATR], and for right-to-left
spreading from exceptionally dominant [−ATR] suffix vowels. Most significantly,
left-to-right spreading of [+ATR] interacts with right-to-left spreading of [−ATR],
the latter in some sense has the “final say” on the realization of vowels in a string,
and each direction of spreading corresponds to one of the contradirectional FSTs of
an EM composition or automata of a bimachine. The fact that the surface realization
of an underlying low vowel depends on unbounded circumambient information is
thus effectively disguised by the independent motivation for each of the interacting
spreading processes.

This feels unlike other non-myopic patterns, such as Luganda unbounded tonal
plateauing or Tutrugbu ATR harmony mentioned in Sect. 1 (see also Sect. 5.2 be-
low), where the linguistically motivated spreading process only corresponds to one
of two contradirectional FSTs of an EM composition or automata of a bimachine,
albeit roughly. The other machine must be more indirectly inferred from the infor-
mation in the causal future of the “primary,” linguistically motivated one, making the
overall pattern non-deterministic. In the case of Tutrugbu in (3), for example, the ba-
sic pattern of [+ATR] spreading is clearly from right to left (root to prefixes), directly
motivating the right-to-left machine, while the conditional blocking of spreading by
[−high] vowels only in the presence of an initial [+high] prefix vowel more indi-
rectly motivates the contradirectional machine. This is what makes some obvious
form of markup necessary in Tutrugbu (McCollum et al. 2018, 2020a), and simi-
larly for unbounded tonal plateauing in Luganda (Jardine 2016). The total mapping
in Turkana is unbounded circumambient and involves lookahead, but precisely be-
cause non-myopia is not analytically salient, interaction is a linguistically useful tool
for identifying that the subregular complexity of Turkana is the same as other more
obviously non-myopic unbounded circumambient maps.

5.2 Interaction subsumes markup

Heinz and Lai’s (2013) vision of weak determinism as a restriction on regular func-
tions implemented through constraints on function composition remains relevant to
the reformulation of WD functions presented in Sect. 4. WD functions remain a class
of functions that “can be decomposed into [an inner] subsequential and [an outer,
contradirectional] subsequential function without the [inner] function marking up its
output in any special way”; merely the piecewise nature of initial attempts to formally
define “any special way” have been exchanged for the unifying notion of interaction
described in this article. And while we argue that bimachines make the identifica-
tion of interaction far easier than EM compositions do, analysts may still choose to
represent WD processes using non-interacting EM compositions. For that reason, we
discuss here how even for EM composition representations of the WD class, the use
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Fig. 12 Schematic example of unbounded tonal plateauing, with phonotactic coding

of markup-based definitions of the WD class should be abandoned because interac-
tion subsumes markup.

Heinz and Lai’s (2013) definition of the WD functions identified two possible
markup strategies and accordingly stipulated that WD functions be both alphabet- and
length-preserving. In identifying and prohibiting strategies case by case, the focus on
markup in this definition of weak determinism inspired further work identifying novel
variations on these two markup strategies. In these works, an even more clever, third
markup strategy has been identified, a form we call PHONOTACTIC CODING.22 In this
strategy, substrings of the input alphabet which would otherwise be phonotactically
illicit in the language in question are used to smuggle information from an inner
function to an outer function via the intermediate form. More specifically, given the
input alphabet A and a set S of non-occurring, phonotactically illicit substrings over
A, the inner function may change some substring of the input to a substring of the
same length drawn from S , conditioned on some motivating property of the input
string. If this change is made at a location in the string that the outer function would
encounter before it would encounter the motivating property of the input string, then
the output of the outer function at that point may be conditioned on information
possibly an unbounded distance from that decision point, rendering the composition
as a whole non-deterministic. For this to occur, it is only required that each otherwise
illicit substring introduced by the inner function be unambiguously interpretable by
the outer function (i.e. from the opposite direction) as having been introduced because
the inner function encountered particular conditions somewhere in the (unbounded)
causal future of the outer function. The result is alphabet-preserving because the set
S is defined over the input alphabet A, and it is length-preserving because substrings
from S only replace substrings of the same length.

Figure 12 illustrates phonotactic coding with a schematic example of unbounded
tonal plateauing, with the inner function marking up its output with the phonotactic
code suggested by Lamont et al. (2019: 197). In cases of unbounded tonal plateauing,
all low (L) tones between two high (H) tones surface as H; other Ls surface as L.23

22The works cited call this “using phonotactically-illicit intermediate symbol sequences as codes for extra
symbols,” (McCollum et al. 2018), “(intermediate) substring markup” (O’Hara and Smith 2019), “using
predictable substrings as markup” (Lamont et al. 2019), and “information [that] is smuggled into an in-
termediate representation using predictable substrings of the symbols already in a language’s alphabet”
(Smith and O’Hara 2019). Graf (2016) makes a related proposal, strategically identifying auxiliary sym-
bols from the input alphabet (“green flags”) that can be used as markup.
23Jardine (2016: 251ff.) cites Luganda, Digo, Xhosa, Zulu, Yaka, Saramaccan, Papago (Tohono O’odham),
and South Kyungsang Korean as examples of languages with some variant of unbounded tonal plateauing;
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These are quintessential cases of unbounded circumambience: the output of a given
L is dependent on information that is unboundedly far to the left and information that
is unboundedly far to the right. The phonotactic code in this case is the intermediate
HLH substring, written in one fell swoop by the inner function f upon encountering
an H preceded by two or more Ls which are themselves preceded by another H.
More precisely, after reading and faithfully writing an initial string of some number
l of Ls (arrow 1) followed by the first H (arrow 2) in the input string x, the inner
function f reads an L. At this point, nothing is written—hence the dotted arrow
3 and the corresponding empty symbol λ in the intermediate string y. If the next
symbol to be read were an H, the 2-symbol sequence HH would be emitted: the first
H taking the place of the previously unwritten L and the second being the faithful
realization of the H just read. Lamont et al. (2019: 197) note that this HLH �→ HHH
mapping “model[s unbounded tonal plateauing] in a local context.” This idiosyncratic
treatment of plateaux of length 3 is crucial for this markup strategy to succeed.

The inner function f instead reads another L and once more writes nothing (ar-
row 4). A subsequent string of some number m of Ls is then written faithfully (ar-
row 5), and upon reading another H, f writes the sequence HLH (the trio of arrows
labeled 6). This compensates for the two previous unwritten Ls, and it does so with
the substring HLH which, when present as such in an input string, would have been
written by the very same inner function f as HHH (= “unbounded tonal plateauing
in a local context”). HLH thus functions as a phonotactic code, informing the outer
function g that the conditions for non-local unbounded tonal plateauing were found in
the input string x and that the L of this HLH coded substring in y, and all subsequent
Ls until another H is read, should surface as H in the ultimate output string z.

To be clear, the works cited above acknowledge that phonotactic coding is a form
of markup (see fn. 22), and indeed that “all unbounded circumambient patterns re-
quire some sort of markup to be used in the application of a pair of subsequential
mappings” (O’Hara and Smith 2019: 10).24 Nevertheless, phonotactic coding has
been claimed in these works to critically distinguish unbounded circumambient pat-
terns that can be described by WD functions from those requiring more expressive
classes of functions because the contradirectional breakdowns of these latter func-
tions crucially require increasing either the alphabet or the length of the string, the
only forms of markup explicitly precluded by Heinz and Lai’s (2013) formal defini-
tion of WD functions. Perhaps most explicitly, O’Hara and Smith (2019: 6) claim that
alphabet- or length-increasing markup is “more powerful” than phonotactic coding of
the kind illustrated in Fig. 12 above. As evidence for this claim, these authors argue
that the unattested set of “true sour grapes” patterns, illustrated with a hypothetical
example in (1b) in Sect. 1 and defined in (14), can be modeled with alphabet- or
length-increasing markup but not with phonotactic codes. These true sour grapes pat-

see that work for discussion and references to sources. In some cases the underlying tonal opposition is
analyzed as H vs. toneless, rather than H vs. L. This distinction is irrelevant here; all that matters is that
there is a two-way opposition, regardless of how it is represented.
24Lamont et al. (2019: 197) even go so far as to comment negatively on the result of phonotactic coding
from the perspective of substantive and methodological assumptions within phonological theory: “En-
coding instructions in intermediate representations is strikingly unphonological and is not intended as a
plausible interpretation of the process.”
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terns are intended to be distinguished from “false sour grapes” patterns, a set which
includes attested unbounded tonal plateauing.

(14) An unbounded spreading pattern is an example of true sour grapes if, given
�∗ ={

T, B, U
}

(T = triggers, B = blockers, U = undergoers), and for all
m,n ∈N,

if left-to-right. . . if right-to-left. . .

a. TmUnB �→ TmUnB, and BUnTm �→ BUnTm, and

b. TmUn �→ Tm+n. UnTm �→ Tn+m.

O’Hara and Smith (2019) and Smith and O’Hara (2019) show that no length-
or alphabet-preserving composition can be devised to correctly describe a true sour
grapes pattern, whereas such compositions are possible for false sour grapes pat-
terns (e.g. for unbounded tonal plateauing in Fig. 12). The key difference between
unbounded tonal plateauing (qua false sour grapes) and true sour grapes is that un-
bounded tonal plateauing defines unbounded circumambient conditions for making a
change to an input string (spreading H), whereas true sour grapes defines unbounded
circumambient conditions for not making a change to an input string. This key differ-
ence guarantees the existence of a phonotactic code for unbounded tonal plateauing,
as follows. Upon encountering an H in an unbounded tonal plateauing pattern, the
inner function will not spread it unless there is another H further down the line, in
principle an unbounded distance away. The bounded HLH �→ HHH mapping is an
instance of the more general spreading condition (“unbounded tonal plateauing in the
local context”); such bounded maps can be performed by the inner function, guaran-
teeing that HLH can function as a phonotactic code for unbounded tonal plateauing
qua false sour grapes.

There is no such guarantee of a phonotactic code for true sour grapes. Upon en-
countering a trigger T, the inner function will spread it unless there is a blocker B
further down the line, in principle an unbounded distance away. There are thus only
bounded instances of the more general non-spreading condition, TUB, which map
unchanged to TUB. Thus, no substring can be freed up to function as a phonotactic
code. But it is important to keep in mind that all possible substrings of �∗ are as-
sumed to be equally likely in the toy language of (14): T is just as likely as B or U
at every point in the string, leaving no substring of any length capable of both en-
coding the presence of a blocker elsewhere in the string while preserving the original
identity of the substring at the location of the markup. While this toy example neatly
demonstrates that phonotactic coding is a non-viable markup strategy for completely
unrestricted input languages (that is, input languages where literally any member of
�∗ is a viable word of the language), we argue that this is not a linguistically relevant
result at the very least because all languages, human or otherwise, are generally not
unrestricted in this way. In other words, while a bounded instance of the more general
non-spreading condition in cases of true sour grapes is not guaranteed, it is neverthe-
less highly probable if not fully guaranteed that some bounded, phonotactically-illicit
substring can be recruited to do the necessary markup work (Graf 2016).

This brings us back to O’Hara and Smith’s (2019) claim that alphabet- and length-
increasing markup is “more powerful” than phonotactic coding. If “more powerful”
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is understood to mean “more expressive,” this is in general false, as expressivity is
usually defined and considered. In formal language theory, a function class picks
out an extensionally-definable equivalence class of functions.25 O’Hara and Smith
(2019) argue that “true” sour grapes can only be modeled with alphabet- and length-
increasing codes while “false” sour grapes can be modeled with either alphabet-
/length-increasing codes or phonotactic codes. This is the central logic of their claim
that phonotactic codes are not as expressive as alphabet- and length-increasing codes.
However, the difference between the mappings of so-called “true” and “false” sour
grapes (and thus their difference in “power” as claimed by O’Hara and Smith 2019)
lies in a restriction on the input languages of the inner and outer functions that O’Hara
and Smith (2019) use to describe these patterns. No complexity class that we are
aware of relies so centrally on comparable restrictions of the domain of the input
language.

For example, consider a majority-rules function f (anbm) = cmax(n,m) which maps
strings of n a’s and m b’s to a string of c’s whose length is either n or m, whichever
value is greater. This function—this mapping between input strings and output
strings—is not regular. Yet, if we (arbitrarily) restrict the input domain f to the lan-
guage a∗, i.e. where no b’s will ever occur, our function is suddenly regular: mapping
an to cn does not require supra-regular computational power. Considering the behav-
ior of f under this domain restriction may tell us something about the relationship
between the structure of the input language and the behavior of f , but the usual ap-
proach to classifying the complexity of f itself would still indicate the function is not
regular.

That the functional descriptions of some language patterns are unable to support
phonotactic coding strategies is really a statement about those patterns, not a descrip-
tion of the expressivity of the machinery required to describe a function on those
patterns. The exchangability of novel intermediate symbols, length-increasing codes
for such symbols, and phonotactic codes for such symbols is apparent from the fact
that they all serve the same purpose: creating information about one end of the input
string at the other end of the intermediate string. It is the ability of each of these three
strategies to accomplish precisely this goal that permits compositions of contradirec-
tional subsequential functions to define ND functions using any of them.

5.3 Machine-independence

In Sect. 1 we alluded to the value that good definitions can provide in crystalizing
linguistic intuitions and in offering clarity and confidence about what linguistic for-
malisms can actually do or how they compare. In Sect. 2.1 and Sect. 4.1, we elabo-
rated more specifically on how machine-independent or extensional characterizations
of a language or function class can be used as relatively formalism-agnostic tools for
phonological metatheory: each machine-independent characterization of a given class
offers a means to completely describe and understand that class and any language or

25At the very least, such a function class is expected to have multiple convergent characterizations, includ-
ing an extensional, machine-independent one, even if we don’t currently know what those are.
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function within that class, as well as a solid foundation to understand and prove re-
sults about that class—including e.g. determining whether it is distinct from some
other class.

In this article we have extended earlier work expressing the intuitive defini-
tion, linguistic motivation, and expected boundary of the WD class (Heinz and Lai
2013) by presenting two distinct classes of phenomena—exemplified by Maasai and
Turkana—and then offering a definition of “interaction” between regular string func-
tions and a corrected definition of the WD class that separates those two classes of
phenomena. We have chosen a machine-independent characterization of the regu-
lar functions transparently related to the unbounded circumambience vs. unbounded
semiambience distinction and as a direct result have a definition of the WD class
that is simple to understand and whose boundary with respect to ND is clear. The
machine-independent characterization we have chosen is also crucial to offering a
definition of interaction in regular string functions that can be used to mechanically
identify any and all contexts where two string functions interact. The definition of
interaction and the revised definition of WD functions also present a unified pic-
ture of how any EM composition that defines an ND function does so, regardless of
whether it uses novel symbols, length-increasing codes for novel symbols, phonotac-
tic codes for novel symbols, some as-yet unidentified new strategy for encoding novel
symbols—or even no codes for novel symbols at all, as in Turkana. In short, we have
provided a definition of the WD class of functions that solves the problems of Heinz
and Lai’s (2013) original, first-pass definition, matching the spirit of that definition
by fixing the letter.

Setting aside the issue of the definition of the WD class, the type of canonical bi-
machines (and the associated machine-independent characterization) presented here
offer an alternative to EM compositions for future work on long-distance processes
in phonology. First, when presented with a single independently motivated bidirec-
tional phenomenon, an EM composition-based analysis requires the linguist to en-
gineer two tightly coupled subsequential functions so that they interact in just the
right way to define the overall map of interest. As we have shown, there are many
strategies to accomplish this, there is not in general anything linguistically interest-
ing or insightful about any particular strategy for doing this, it is often nevertheless
difficult to do correctly for analysts, and the resulting analyses are generally harder
to read and understand as a consequence. Circumstances where there are two inde-
pendently motivated contradirectional processes still may justify use and exploration
of EM compositions, but identification of interaction or classification of a composi-
tion’s complexity will likely remain easier to analyze using representations like what
we have presented here: canonical bimachines offer a simpler path to identifying in-
teraction that is otherwise difficult to spot, and to classifying an EM composition’s
position on one side of the WD–ND boundary vs. the other.

6 Conclusion

Phonologists have long concerned themselves with the ways that more than one gram-
matical statement (rules, constraints, etc.) may interact with one another. This article
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provides a formal definition of function interaction that differentiates properly weakly
deterministic functions from the strictly more expressive class of non-deterministic
functions. Formal comparison of the functional analyses of the ATR harmony patterns
of Maasai and Turkana demonstrates the key difference between weakly determin-
istic and non-deterministic functions: the contradirectional subsequential functions
comprising weakly deterministic functions do not interact because the patterns they
describe are unbounded semiambient, while those comprising a non-deterministic
function do interact because the patterns they describe are unbounded circumambi-
ent. By framing the distinction between weak determinism and non-determinism in
this way, our proposal subsumes the various strategies employed in previous work
to delimit the subregular class of weakly deterministic functions, thereby offering a
single, unified way to characterize the expressivity difference between unbounded
circumambient and other, unbounded semiambient bidirectional patterns.

Beyond the temptation to ascribe computational significance to cosmetic differ-
ences between markup strategies, viewing weak determinism as a class defined by its
resistance to description by a collection of disparate strategies is less parsimonious
than the unified account provided by interaction. It also obscures the sense of “inter-
mediateness” that is characteristic of the class. Heinz and Lai (2013: 54) justify the
framing of these functions as “weakly” or intermediately deterministic by noting that
“they are not necessarily deterministic, but they are ‘more’ deterministic than regular
functions.” A more substantive (albeit informal) characterization of the intermediate-
ness of weak determinism is given in (15).

(15) Deterministic, weakly deterministic, and non-deterministic regular functions
compared

a. Deterministic (subsequential): There exists a side of the string, for ev-
ery position in all strings, for which the identity of the output element is
determined by elements from that side.

b. Weakly deterministic: For every position in all strings, there exists a side
of the string for which the identity of the output element is determined
by elements from that side.

c. Non-deterministic: For every position in all strings, both sides of the
string may be used to determine the identity of the output element.

A weakly deterministic function is intermediate in expressivity because different
output positions may require information from different sides of the form (unlike de-
terministic functions), but no single output position requires information from both
sides of the form (unlike non-deterministic functions). In this sense, weakly determin-
istic functions are “more” deterministic than non-deterministic functions but “less” so
than deterministic functions. This intuition is preserved in thinking of determinism in
terms of interaction. Deterministic functions are regular functions that can be defined
as non-interacting compositions of equi-directional (as opposed to contradirectional)
subsequential functions. Weakly deterministic functions are regular functions that
can be defined as a non-interacting compositions of contradirectional subsequential
functions. And finally, non-deterministic functions are regular functions that can be
defined as a interacting compositions of contradirectional subsequential functions.



Weak determinism and the computational consequences of interaction

Interaction thus captures the essense of what makes weak determinism not quite de-
terministic. Defining weakly deterministic functions as the class of EM compositions
for which the inner and outer functions do not interact is computationally more sound
than attempts to exhaustively list all of the ways one can imagine marking up an in-
termediate string.
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Baković, Eric 2002. Vowel harmony and cyclicity in Eastern Nilotic. In Proceedings of the 27th annual

meeting of the Berkeley Linguistics Society, eds. Charles Chang, Michael J. Houser, Yuni Kim, David
Mortensen, Mischa Park-Doob, and Maziar Toosarvandani, 1–12. Berkeley: Berkeley Linguistics
Society.
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